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1. Overview
To support research and policymaking, there is an 
increasing demand for microdata. Microdata are data 
that hold information collected on individual units, 
such as people, households or enterprises. For statistical 
producers, microdata dissemination increases returns 
on data collection and helps improve data quality and 
credibility. But statistical producers are also faced with 
the challenge of ensuring respondents’ confidentiality 
while making microdata files more accessible. Not only 
are data producers obligated to protect confidentiality, 
but security is also crucial for maintaining the trust of 
respondents and ensuring the honesty and validity of 
their responses. 

Proper and secure microdata dissemination requires 
statistical agencies to establish policies and procedures 
that formally define the conditions for accessing 
microdata (Dupriez and Boyko, 2010), and to apply 
statistical disclosure control (SDC) methods to data 
before release. This guide, Introduction to Statistical 
Disclosure Control (SDC), discusses common SDC 
methods for microdata obtained from sample surveys, 
censuses and administrative sources.

1.1 How to Use This Guide  

This guide is intended for statistical producers at 
National Statistical Offices (NSOs) and other statistical 
agencies, as well as data users who are interested in the 
subject. It assumes no prior knowledge of SDC. The 
guide is focused on SDC methods for microdata. It does 
not cover SDC methods for protecting tabular outputs 
(see Castro 2010 for more details).  

The guide starts with an introduction to the basic 
concepts regarding statistical disclosure in Section 2. 
Section 3 discusses methods for measuring disclosure 
risks. Section 4 presents the most common SDC 
methods, followed by an introduction to common 
approaches for assessing information loss and data 
utility in Section 5. Section 6 provides practical 
guidelines on how to implement SDC. Section 7 uses a 
sample dataset to illustrate the primary concepts and 
procedures introduced in this guide.

All the methods introduced in this guide can be 
implemented using sdcMicroGUI, an R-based, user-
friendly application (Kowarik et al., 2013) and/or 
the more advanced R-Package, sdcMicro (Templ et 
al., 2013). Readers are encouraged to explore them 
using this guide along with the detailed user manuals 

of sdcMicroGUI (Templ et al., 2014b) and sdcMicro 
(Templ et al., 2013). Additional case studies of how to 
implement SDC on specific datasets are also available; 
see Templ et al. 2014a. 

2. Concepts
This section introduces the basic concepts related to 
statistical disclosure, SDC methods and the trade-off 
between disclosure risks and information loss. 

2.1 What is Disclosure

Suppose a hypothetical intruder has access to some 
released microdata and attempts to identify or find 
out more information about a particular respondent. 
Disclosure, also known as “re-identification,” occurs 
when the intruder reveals previously unknown 
information about a respondent by using the released 
data. Three types of disclosure are noted here (Lambert, 
1993): 

•	 Identity disclosure occurs if the intruder 
associates a known individual with a released 
data record. For example, the intruder links a 
released data record with external information, 
or identifies a respondent with extreme data 
values. In this case, an intruder can exploit a 
small subset of variables to make the linkage, 
and once the linkage is successful, the intruder 
has access to all other information in the 
released data related to the specific respondent. 

•	 Attribute disclosure occurs if the intruder 
is able to determine some new characteristics 
of an individual based on the information 
available in the released data. For example, if a 
hospital publishes data showing that all female 
patients aged 56 to 60 have cancer, an intruder 
then knows the medical condition of any female 
patient aged 56 to 60 without having to identify 
the specific individual. 

•	 Inferential disclosure occurs if the intruder 
is able to determine the value of some charac-
teristic of an individual more accurately with 
the released data than otherwise would have 
been possible. For example, with a highly 
predictive regression model, an intruder may 
be able to infer a respondent’s sensitive income 
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information using attributes recorded in the 
data, leading to inferential disclosure.  

2.2 Classifying Variables

2.2.1 Identifying variables

SDC methods are often applied to identifying variables 
whose values might lead to re-identification. Identifying 
variables can be further classified into direct identifiers 
and key variables: 

•	 Direct	 identifiers are variables that un-
ambiguously identify statistical units, such 
as social insurance numbers, or names and 
addresses of companies or persons. Direct 
identifiers should be removed as the first step 
of SDC.

•	 Key variables are a set of variables that, 
in combination, can be linked to external 
information to re-identify respondents in the 
released dataset. Key variables are also called 
“implicit identifiers” or “quasi-identifiers”. 
For example, while on their own, the gender, 
age, region and occupation variables may 
not reveal the identity of any respondent, but 
in combination, they may uniquely identify 
respondents. 

2.2.2 Sensitive variables

SDC methods are also applied to sensitive variables 
to protect confidential information of respondents. 
Sensitive variables are those whose values must not 
be discovered for any respondent in the dataset. 
The determination of sensitive variables is often 
subject to legal and ethical concerns. For example, 
variables containing information on criminal history, 
sexual behavior, medical records or income are often 
considered sensitive. In some cases, even if identity 
disclosure is prevented, releasing sensitive variables 
can still lead to attribute disclosure (see example in 
Section 3.2).

A variable can be both identifying and sensitive. 
For example, income variable can be combined with 
other key variables to re-identify respondents, but the 
variable itself also contains sensitive information that 
should be kept confidential. On the other hand, some 
variables, such as occupation, might not be sensitive, 
but could be used to re-identify respondents when 
combined with other variables. In this case, occupation 

is a key variable, and SDC methods should be applied to 
it to prevent identity disclosure. 

2.2.3 Categorical vs. continuous
variables

SDC methods differ for categorical variables and 
continuous variables. Using the definitions in Domingo-
Ferrer and Torra (2005), a categorical variable takes 
values over a finite set. For example, gender is a 
categorical variable. A continuous variable is numerical, 
and arithmetic operations can be performed with it. For 
example, income and age are continuous variables. A 
numerical variable does not necessarily have an infinite 
range, as in the case of age. 

2.3 Disclosure Risk vs. Information
Loss 

Applying SDC techniques to the original microdata 
may result in information loss and hence affect data 
utility1. The main challenge for a statistical agency, 
therefore, is to apply the optimal SDC techniques that 
reduce disclosure risks with minimal information 
loss, preserving data utility. To illustrate the trade-off 
between disclosure risk and information loss, Figure 
1 shows a general example of results after applying 
two different SDC methods to the European Union 
Structure of Earnings Statistics (SES) data (Templ et 
al., 2014a). The specific SDC methods and measures of 
disclosure risk and information loss will be explained in 
the following sections. 

Before applying any SDC methods, the original data 
is assumed to have disclosure risk of 1 and information 
loss of 0. As shown in Figure 1, two different SDC 
methods are applied to the same dataset. The solid curve 
represents the first SDC method (i.e., adding noise; 
see Section 4.2.2). The curve illustrates that, as more 
noise is added to the original data, the disclosure risk 
decreases but the extent of information loss increases. 

In comparison, the dotted curve, illustrating the result 
of the second SDC method (i.e., micro-aggregation; see 
Section 4.2.1) is much less steep than the solid curve 
representing the first method. In other words, at a given 
level of disclosure risk—for example, when disclosure 
risk is 0.1—the information loss resulting from  the 
second method is much lower than that resulting from 
the first. 

1  Data utility describes the value of data as an analytical resource, 
comprising analytical completeness and analytical validity. 
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Therefore, for this specific dataset, Method 2 is the 
preferred SDC method for the statistical agency to 
reduce disclosure risk with minimal information loss. 
In Section 6, we will discuss in detail how to determine 
the acceptable levels of risk and information loss in 
practice.  
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Figure 1: Disclosure risk versus information loss obtained from 
two specific SDC methods applied to the SES data

3. Measuring Disclosure Risk
Disclosure risks are defined based on assumptions of 
disclosure scenarios, that is, how the intruder might 
exploit the released data to reveal information about 
a respondent. For example, an intruder might achieve 
this by linking the released file with another data source 
that shares the same respondents and identifying 
variables. In another scenario, if an intruder knows that 
his/her acquaintance participated in the survey, he/
she may be able to match his/her personal knowledge 
with the released data to learn new information about 
the acquaintance. In practice, most of the measures 
for assessing disclosure risks, as introduced below, are 
based on key variables, which are determined according 
to assumed disclosure scenarios.  

3.1 Sample uniques, population
uniques and record-level
disclosure risk 

Disclosure risks of categorical variables are 
defined based on the idea that records with unique 
combinations of key variable values have higher risks 
of re-identification (Skinner and Holmes, 1998; Elamir 
and Skinner, 2006). We call a combination of values of 
an assumed set of key variables a pattern, or key value. 
Let  be the frequency counts of records with pattern  
in the sample. A record is called a sample unique if it has 
a pattern  for which  . Let  denote the number 
of units in the population having the same pattern  . A 
record is called a population unique if  .

In Table 1, a very simple dataset is used to illustrate 
the concept of sample frequency counts and sample 
uniques. The sample dataset has eight records and four 
pre-determined key variables (i.e., Age group, Gender, 
Income and Education). Given the four key variables, 
we have six distinct patterns, or key values. The sample 
frequency counts of the first and second records equal 
2 because the two records share the same pattern (i.e., 
{20s, Male, >50k, High school}). Record 5 is a sample 
unique because it is the only individual in the sample 
who is a female in her thirties earning less than 50k 
with a university degree. Similarly, records 6, 7 and 
8 are sample uniques, because they possess distinct 
patterns with respect to the four key variables. 

Table 1: Example of frequency count, sample uniques and record-
level disclosure risks estimated with a Negative Binomial model

 Age 
group Gender Income Education Sampling 

weights Risk

1

2

20s

20s

Male

Male

>50k

>50k

High school

High school

2

2

18

92

0.017

0.017

3

4

20s

20s

Male

Male

≤50k

≤50k

High school

High school

2

2

45.5

39

0.022

0.022

5 30s Female ≤50k University 1 17 0.177

6 40s Female ≤50k High school 1 8 0.297

7 40s Female ≤50k Middle school 1 541 0.012

8 60s Male ≤50k University 1 5 0.402

Consider a sample unique with  . Assuming no 
measurement error, there are  units in the population 
that could potentially match the record in the sample. 
The probability that the intruder can match the sample 
unique with the individual in the population is thus 
1/  assuming that the intruder does not know if the 
individual in the population is a respondent in the 
sample or not. The disclosure risk for the sample unique 
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is thus defined as the expected value of 1/  , given 
. More generally, the record-level disclosure risk 

for any given record is defined as the expected value of 
1/  , given  .

In practice, we observe only the sample frequency 
counts  . To estimate the record-level disclosure risks, 
we take into account the sampling scheme and make 
inferences on  assuming that  follows a generalized 
Negative Binomial distribution (Rinott and Shlomo, 
2006; Franconi and Polettini, 2004). 

3.2 Principles of k-anonymity and
l-diversity

Assuming that sample uniques are more likely to be re-
identified, one way to protect confidentiality is to ensure 
that each distinct pattern of key variables is possessed 
by at least k records in the sample. This approach is 
called achieving k-anonymity (Samarati and Sweeney, 
1998; Sweeney, 2002). A typical practice is to set k = 3, 
which ensures that the same pattern of key variables is 
possessed by at least three records in the sample. Using 
the previous notation, 3-anonymity means  for all 
records. By this definition, all records in the previous 
example (Table 1) violate 3-anonymity. 

Even if a group of observations fulfill k-anonymity, 
an intruder can still discover sensitive information. 
For example, Table 2 satisfies 3-anonymity, given the 
two key variables gender and age group. However, 
suppose an intruder gets access to the sample inpatient 
records, and knows that his neighbor, a girl in her 
twenties, recently went to the hospital. Since all records 
of females in their twenties have the same medical 
condition, the intruder discovers with certainty that 
his neighbor has cancer. In a different scenario, if the 
intruder has a male friend in his thirties who belongs 
to one of the first three records, the intruder knows that 
the incidence of his friend having heart disease is low 
and thus concludes that his friend has cancer. 

Table 2: Example inpatient records illustrating k-anonymity and 
l-diversity

Key variables Sensitive variable Distinct l-diversity

Gender Age group Medical condition

1
2
3

Male
Male
Male

30s
30s
30s

3
3
3

Cancer
Heart Disease
Heart Disease

2
2
2

4
5
6

Female
Female
Female

20s
20s
20s

3
3
3

Cancer
Cancer
Cancer

1
1
1

To address this limitation of k-anonymity, the 
l-diversity principle (Machanavajjhala et al., 2007) was 

introduced as a stronger notion of privacy: A group of 
observations with the same pattern of key variables 
is l-diverse if it contains at least l “well-represented” 
values for the sensitive variable. Machanavajjhala et 
al. (2007) interpreted “well-represented” in a number 
of ways, and the simplest interpretation, distinct 
l-diversity, ensures that the sensitive variable has at 
least l distinct values for each group of observations 
with the same pattern of key variables. As shown in 
Table 2, the first three records are 2-diverse because 
they have two distinct values for the sensitive variable, 
medical condition.  

3.3 Disclosure risks for hierarchical
data

Many micro-datasets have hierarchical, or multilevel, 
structures; for example, individuals are situated in 
households. Once an individual is re-identified, the 
data intruder may learn information about the other 
household members, too. It is important, therefore, 
to take into account the hierarchical structure of the 
dataset when measuring disclosure risks. 

It is commonly assumed that the disclosure risk 
for a household is greater than or equal to the risk 
that at least one member of the household is re-
identified. Thus household-level disclosure risks 
can be estimated by subtracting the probability that 
no person from the household is re-identified from 
one. For example, if we consider a single household 
of three members, whose individual disclosure risks 
are 0.1, 0.05 and 0.01, respectively, the disclosure 
risk for the entire household will be calculated as  
1 – (1–0.1) x (1– 0.05) x (1 – 0.01) = 0.15355.

3.4 Measuring global risks

In addition to record-level disclosure risk measures, 
a risk measure for the entire file-level or global risk 
micro-dataset might be of interest. In this section, we 
present three common measures of global risks: 

•	 Expected	 number	 of	 re-identifications. 
The easiest measure of global risk is to sum 
up the record-level disclosure risks (defined in 
Section 3.1), which gives the expected number 
of re-identifications. Using the example from 
Table 1, the expected number of re-identifica-
tions is 0.966, the sum of the last column. 

•	 Global risk measure based on log-linear 
models. This measure, defined as the number 
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of sample uniques that are also population 
uniques, is estimated using standard log-linear 
models (Skinner and Holmes, 1998; Ichim, 
2008). The population frequency counts, or 
the number of units in the population that 
possess a specific pattern of key variables 
observed in the sample, are assumed to follow 
a Poisson distribution. The global risk can then 
be estimated by a standard log-linear model, 
using the main effects and interactions of key 
variables. A more precise definition is available 
in Skinner and Holmes 1998. 

•	 Benchmark approach. This measure counts 
the number of observations with record-level 
risks higher than a certain threshold and 
higher than the main part of the data. While 
the previous two measures indicate an overall 
re-identification risk for a microdata file, the 
benchmark approach is a relative measure 
that examines whether the distribution of 
record-level risks contains extreme values. For 
example, we can identify the number of records 
with individual risk  satisfying the following 
conditions: 

 
 
Where  represents all record-level risks, 
and  MAD( ) is the median absolute deviation 
of all record-level risks. 

3.5 Special Uniques Detection
Algorithm (SUDA)

An alternative approach to defining disclosure risks 
is based on the concept of special uniqueness. For 
example, the eighth record in Table 1 is a sample 
unique with respect to the key variable set {Age group, 
Gender, Income, Education}. Furthermore, a subset of 
the key variable set, for example, {Male, University}, 
is also unique in the sample. A record is defined as a 
special unique with respect to a variable set K , if it is 
a sample unique both on K and on a subset of K (Elliot 
et al., 1998). Research has shown that special uniques 
are more likely to be population uniques than random 
uniques (Elliot et al., 2002).

A set of computer algorithms, called SUDA, was 
designed to comprehensively detect and grade special 
uniques (Elliot et al., 2002). SUDA takes a two-step 
approach. In the first step, all unique attribute sets (up 
to a user-specified size) are located at record level. To 
streamline the search process, SUDA considers only 

Minimal Sample Uniques (MSUs), which are unique 
attribute sets without any unique subsets within a 
sample. In the example presented in Table 3, {Male, 
University} is a MSU of record 8 because none of 
its subsets, {Male} or {University}, is unique in the 
sample. Whereas, {60s, Male, ≤50k, University} is a 
unique attribute set, but not a MSU because its subsets 
{60s, Male, University} and {Male, University} are both 
unique subsets in the sample. 

Once all MSUs have been found, a SUDA score is 
assigned to each record indicating how “risky” it is, 
using the size and distribution of MSUs within each 
record (Elliot et al., 2002). The potential risk of the 
records is determined based on two observations: 1) the 
smaller the size of the MSU within a record, the greater 
the risk of the record, and 2) the larger the number of 
MSUs possessed by the record, the greater the risk of 
the record. 

For each MSU of size k contained in a given record, 
a score is computed by  , where M is the 
user-specified maximum size of MSUs, and ATT is the 
total number of attributes in the dataset. By definition, 
the smaller the size k of the MSU, the larger the score 
for the MSU. 

The final SUDA score for the record is computed by 
adding the scores for each MSU. In this way, records 
with more MSUs are assigned a higher SUDA score. 

To illustrate how SUDA scores are calculated, 
record 8 in Table 3 has two MSUs: {60s} of size 1, and 
{Male, University} of size 2. Suppose the maximum 
size of MSUs is set at 3, the score assigned to {60s} is 
computed by , and the score assigned to 
{Male, University} is  The SUDA score 
for the eighth record in Table 3 is then 8. 

Table 3: Example dataset illustrating SUDA scores

 Age 
group

Gender Income Education SUDA 
score

Risk using DIS-
SUDA method

1
2

20s
20s

Male
Male

>50k
>50k

High school
High school

2
2

0
0

0.00
0.00

3
4

20s
20s

Male
Male

≤50k
≤50k

High school
High school

2
2

0
0

0.00
0.00

5 30s Female ≤50k University 1 8 0.0149

6 40s Female ≤50k High school 1 4 0.0111

7 40s Female ≤50k Middle school 1 6 0.0057

8 60s Male ≤50k University 1 8 0.0149
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In order to estimate record-level disclosure risks, 
SUDA scores can be used in combination with the Data 
Intrusion Simulation (DIS) metric (Elliot and Manning, 
2003), a method for assessing disclosure risks for the 
entire dataset (i.e., file-level disclosure risks). Roughly 
speaking, the DIS-SUDA method distributes the 
file-level risk measure generated by the DIS metric 
between records according to the SUDA scores of each 
record. This way, SUDA scores are calibrated against a 
consistent measure to produce the DIS-SUDA scores, 
which provide the record-level disclosure risk. A full 
description of the DIS-SUDA method is provided by 
Elliot and Manning (2003).  

Both SUDA and DIS-SUDA scores can be computed 
using sdcMicro (Templ et al., 2013). Given that the 
implementation of SUDA can be computationally 
demanding, sdcMicro uses an improved SUDA2 
algorithm, which more effectively locates the boundaries 
of the search space for MSUs in the first step (Manning 
et al., 2008).

Table 3 presents the record-level risks estimated 
using the DIS-SUDA approach for the sample dataset. 
Compared to the risk measures presented in Table 1, 
the DIS-SUDA score (Table 3) does not fully account for 
the sampling weights, while the risk measures based on 
negative binomial model (Table 1) are lower for records 
with greater sampling weights, given the same sample 
frequency count. Therefore, instead of replacing the 
risk measures introduced in Section 3.1, the SUDA 
scores and DIS-SUDA approach can be best used as a 
complementary method. 

3.6 Record Linkage

The concept of uniqueness might not be applicable 
to continuous key variables, especially those with an 
infinite range, since almost every record in the dataset 
will then be identified as unique. In this case, a more 
applicable method is to assess risk based on record 
linkages. 

Assume a disclosure scenario where an intruder 
has access to a dataset that has been perturbed before 
release, as well as an external data source that contains 
information on the same respondents included in 
the released dataset. The intruder attempts to match 
records in the released dataset with those in the 
external dataset using common variables. Suppose 
that the external data source, to which the intruder has 
access, is the original data file of the released dataset. 
Essentially, the record linkage approach assesses to 

what extent records in the perturbed data file can be 
correctly matched with those in the original data file. 
There are three general approaches to record linkage: 

•	 Distance-based record linkage (Pagliuca 
and Seri, 1999) computes distances between 
records in the original dataset and the protected 
dataset. Suppose we have obtained a protected 
dataset A’ after applying some SDC methods to 
the original dataset A. For each record r in the 
protected dataset A’ ,we compute its distance 
to every record in the original dataset, and 
consider the nearest and the second nearest 
records. Suppose we have identified r1 and r2 
from the original dataset as the nearest and 
second-nearest records, respectively, to record 
r. If r1 is the original record used to generate 
r, or, in other words, record r in the protected 
dataset and r1 in the original dataset refer to 
the same respondent, then we mark record r 
“linked”. Similarly, if record r was generated 
from r2 (the second-nearest record in the 
original dataset), we mark r “linked to the 2nd 
nearest”. We proceed the same way for every 
record in the protected dataset A’ .  Finally, 
disclosure risk is defined as the percentage of 
records marked as “linked” or “linked to the 
2nd nearest” in the protected dataset A’ .This 
record-linkage approach based on distance 
is compute-intensive and thus might not be 
applicable for large datasets.

• Alternatively, probabilistic record linkage 
(Jaro, 1989) pairs records in the original and 
protected datasets, and uses an algorithm to 
assign a weight for each pair that indicates the 
likelihood that the two records refer to the same 
respondent. Pairs with weights higher than a 
specific threshold are labeled as “linked”, and 
the percentage of records in the protected data 
marked as “linked” is the disclosure risk.  

• In addition, a third risk measure is called 
interval disclosure (Paglica and Seri, 1999), 
which simplifies the distance-based record 
linkage and thus is more applicable for large 
datasets. In this approach, after applying SDC 
methods to the original values, we construct an 
interval around each masked value. The width 
of the interval is based on the rank of the value 
the variable takes on or its standard deviation. 
We then examine whether the original value 
of the variable falls within the interval. The 
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measure of disclosure risk is the proportion of 
original values that fall into the interval. 

3.7 Special Treatment of Outliers

Almost all datasets used in official statistics contain 
records that have at least one variable value quite 
different from the general observations. Examples of 
such outliers might be enterprises with a very high 
value for turnover or persons with extremely high 
income. Unfortunately, intruders may want to disclose 
a statistical unit with “special” characteristics more 
than those exhibiting the same behavior as most other 
observations. We also assume that the further away an 
observation is from the majority of the data, the easier 
the re-identification. For these reasons, Templ and 
Meindl (2008a) developed a disclosure risk measures 
that take into account the “outlying-ness” of an 
observation. 

The algorithm starts with estimating a Robust 
Mahalanobis Distance (RMD) (Maronna et al., 2006) 
for each record. Then intervals are constructed around 
the original values of each record. The length of the 
intervals is weighted by the squared RMD; the higher 
the RMD, the larger the corresponding interval. If, after 
applying SDC methods, the value of the record falls 
within the interval around its original value, the record 
is marked “unsafe”. One approach, RMDID1, obtains 
the disclosure risk by the percentage of records that are 
unsafe. The other approach, RMDID2, further checks 
if the record marked unsafe has close neighbors; if m 
other records in the masked dataset are very close (by 
Euclidean distances) to the unsafe record, the record is 
considered safe. 

4. Common SDC Methods
There are three broad kinds of SDC techniques: i) 
non-perturbative techniques, such as recoding and 
local suppression, which suppress or reduce the detail 
without altering the original data; ii) perturbative 
techniques, such as adding noise, Post-Randomization 
Method (PRAM), micro-aggregation and shuffling, 
which distort the original micro-dataset before release; 
and iii) techniques that generate a synthetic microdata 
file that preserves certain statistics or relationships of 
the original files.

This guide focuses on the non-perturbative and 
perturbative techniques. Creating synthetic data is a 
more complicated approach and out of scope for this 
guide (see Drechsler 2011, Alfons et al. 2011, Templ and 

Filzmoser 2013 for more details). As with disclosure 
risk measures, different SDC methods are applicable to 
categorical variables versus continuous variables.  

4.1 Common SDC Methods for
Categorical Variables

4.1.1 Recoding

Global recoding is a non-perturbative method that 
can be applied to both categorical and continuous 
key variables. For a categorical variable, the idea of 
recoding is to combine several categories into one 
with a higher frequency count and less information. 
For example, one could combine multiple levels of 
schooling (e.g., secondary, tertiary, postgraduate) into 
one (e.g., secondary and above). For a continuous 
variable, recoding means to discretize the variable; for 
example, recoding a continuous income variable into a 
categorical variable of income levels. In both cases, the 
goal is to reduce the total number of possible values of 
a variable. 

Typically, recoding is applied to categorical variables 
to collapse categories with few observations into a single 
category with larger frequency counts. For example, if 
there are only two respondents with tertiary level of 
education, tertiary can be combined with the secondary 
level into a single category of “secondary and above”. 

A special case of global recoding is top and bottom 
coding. Top coding sets an upper limit on all values 
of a variable and replaces any value greater than this 
limit by the upper limit; for example, top coding would 
replace the age value for any individual aged above 80 
with 80. Similarly, bottom coding replaces any value 
below a pre-specified lower limit by the lower limit; for 
example, bottom coding would replace the age value for 
any individual aged under 5 with 5.  

4.1.2 Local suppression

If unique combinations of categorical key variables 
remain after recoding, local suppression could be 
applied to the data to achieve k-anonymity (described 
in Section 3.2). Local suppression is a non-perturbative 
method typically applied to categorical variables. In 
this approach, missing values are created to replace 
certain values of key variables to increase the number 
of records sharing the same pattern, thus reducing the 
record-level disclosure risks. 

There are two approaches to implementing local 
suppression. One approach sets the parameter k and 
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tries to achieve k-anonymity (typically 3-anonymity) 
with minimum suppression of values. For example, in 
sdcMicroGUI (Templ et al., 2014b), the user sets the 
value for k and orders key variables by the likelihood 
they will be suppressed. Then the application calls a 
heuristic algorithm to suppress a minimum number of 
values in the key variables to achieve k-anonymity. The 
second approach sets a record-level risk threshold. This 
method first identifies unsafe records with individual 
disclosure risks higher than the threshold and then 
suppresses all values of the selected key variable(s) for 
all the unsafe records.  

4.1.3 Post-Randomization Method PRAM)

If there are a larger number of categorical key variables 
(e.g., more than 5), recoding might not sufficiently 
reduce disclosure risks, or local suppression might 
lead to great information loss. In this case, the PRAM 
(Gouweleeuw et al., 1998) may be a more efficient 
alternative. 

PRAM (Gouweleeuw et al., 1998) is a probabilistic, 
perturbative method for protecting categorical 
variables. The method swaps the categories for selected 
variables based on a pre-defined transition matrix, 
which specifies the probabilities for each category to be 
swapped with other categories. 

To illustrate, consider the variable location, with 
three categories:  “east”,  “mid-
dle”,  “west”. We define a 3-by-3 transition 
matrix, where  is the probability of changing category 
i to j. For example, in the following matrix, 

P= 

the probability that the value of the variable will 
stay the same after perturbation is 0.1, since we set  

= =  =0.1. The probability of east being 
changed into middle is  =0.9, while east will not be 
changed into west because  is set to be 0. 

PRAM protects the records by perturbing the original 
data file, while at the same time, since the probability 
mechanism used is known, the characteristics of the 
original data can be estimated from the perturbed data 
file. 

PRAM can be applied to each record independently, 
allowing the flexibility to specify the transition matrix 

as a function parameter according to desired effects. 
For example, it is possible to prohibit changes from 
one category to another by setting the corresponding 
probability in the transition matrix to 0, as shown in 
the example above. It is also possible to apply PRAM to 
subsets of the microdata independently. 

4.2 Common SDC Methods for
Continuous Variables

4.2.1 Micro-aggregation

Micro-aggregation (Defays and Anwar, 1998) is a 
perturbing method typically applied to continuous 
variables. It is also a natural approach to achieving 
k-anonymity. The method first partitions records into 
groups, then assigns an aggregate value (typically the 
arithmetic mean, but other robust methods are also 
possible) to each variable in the group. 

As an example, in Table 4, records are first partitioned 
into groups of two, and then the values are replaced by 
the group means. Note that in the example, by setting 
group size to two, micro-aggregation automatically 
achieves 2-anonymity with respect to the three key 
variables. 

To preserve the multivariate structure of the data, the 
most challenging part of micro-aggregation is to group 
records by how “similar” they are. The simplest method 
is to sort data based on a single variable in ascending 
or descending order. Another option is to cluster data 
first, and sort by the most influential variable in each 
cluster (Domingo-Ferrer et al., 2002). These methods, 
however, might not be optimal for multivariate data 
(Templ and Meindl, 2008b).  

The Principle Component Analysis method sorts 
data on the first principal components (e.g., Templ 
and Meindl, 2008b). A robust version of this method 
can be applied to clustered data for small- or medium-
sized datasets (Templ, 2008). This approach is fast 
and performs well when the first principal component 
explains a high percentage of the variance for the key 
variables under consideration.

The Maximum Distance to Average Vector (MDAV) 
method is a standard method that groups records based 
on classical Euclidean distances in a multivariate space 
(Domingo-Ferrer and Mateo-Sanz, 2002). The MDAV 
method was further improved by replacing Euclidean 
distances with robust multivariate (Mahalanobis) 
distance measures (Templ and Meindl, 2008b). All of 
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these methods can be implemented in sdcMicro (Templ 
et al., 2013) or sdcMicroGUI (Kowarik et al., 2013; 
Templ et al., 2014b).   

4.2.2 Adding noise

Adding noise is a perturbative method typically applied 
to continuous variables. The idea is to add or multiply a 
stochastic or randomized number to the original values 
to protect data from exact matching with external files. 
While this approach sounds simple in principle, many 
different algorithms can be used. In this section, we 
introduce the uncorrelated and correlated additive 
noise (Brand, 2002; Domingo-Ferrer et al., 2004). 

Uncorrelated additive noise can be expressed as the 
following:

where vector  represents the original values of variable 
 ,  represents the perturbed values of variable   and   

(uncorrelated noise, or white noise) denotes normally 
distributed errors with  for all  . 

While adding uncorrelated additive noise preserves 
the means and variance of the original data, co-
variances and correlation coefficients are not preserved. 
It is preferable to apply correlated noise because the 
co-variance matrix of the errors is proportional to the 
co-variance matrix of the original data (Brand, 2002; 
Domingo-Ferrer et al., 2004). 

The distribution of the original variables  often 
differs and may not follow a normal distribution. In this 
case, a robust version of the correlated noise method is 
described in detail by Templ and Meindl (2008b). The 

method of adding noise should be used with caution, as 
the results depend greatly on the parameters chosen.

4.2.3	 Shuffling

Shuffling (Muralidhar and Sarathy, 2006) generates 
new values for selected sensitive variables based on the 
conditional density of sensitive variables given non-
sensitive variables. As a rough illustration, assume we 
have two sensitive variables, income and savings, which 
contain confidential information. We first use age, 
occupation, race and education variables as predictors 
in a regression model to simulate a new set of values for 
income and savings. We then apply reverse mapping 
(i.e., shuffling) to replace ranked new values with the 
ranked original values for income and savings. This 
way, the shuffled data consists of the original values of 
the sensitive variables. 

Muralidhar and Sarathy (2006) showed that, since 
we only need the rank of the perturbed value in this 
approach, shuffling can be implemented using only 
the rank-order correlation matrix (which measures the 
strength of the association between the ranked sensitive 
variables and ranked non-sensitive variables) and the 
ranks of non-sensitive variable values. 

5. Measuring Information Loss 
After SDC methods have been applied to the original 
dataset, it is critical to measure the resulting information 
loss. There are two complementary approaches to 
assessing information loss: (i) direct measures of 
distances between the original data and perturbed 
data, and (ii) the benchmarking approach comparing 
statistics computed on the original and perturbed data. 

Table 4: Example of micro-aggregation:  ,  ,  , are key variables containing original values.  ,  ,  , contain values after 
applying micro-aggregation.
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5.1 Direct Measures 

Direct measures of information loss are based on 
the classical or robust distances between original 
and perturbed values. Following are three common 
definitions:

•	 IL1s, proposed by Yancey, Winkler and 
Creecy (2002), can be interpreted as the 
scaled distances between original and 
perturbed values. Let  be the original 
dataset,  is a perturbed version 
of X, and  is the j-th variable in the i-th 
original record. Suppose both datasets 
consist of n records and p variables each. The 
measure of information loss is defined by   

 
        
   
 
where  is the standard deviation of the j-th 
variable in the original dataset. 

• A second measure is the relative absolute 
differences	 between eigenvalues of the 
co-variances from standardized original and 
perturbed values of continuous key variables 
(e.g., Templ and Meindl, 2008b). Eigenvalues 
can be estimated from a robust or classical 
version of the co-variance matrix.

•	 lm measures the differences between estimates 
obtained from fitting a pre-specified regression 
model on the original data and the perturbed data: 
 
 

 
 
 
where  denotes the estimated values using 
the original data,  the estimated values using 
the perturbed data. Index w indicates that the 
survey weights should be taken into account 
when fitting the model.

5.2 Benchmarking Indicators

Although, in practice, it is not possible to create a file 
with the exact same structure as the original file after 
applying SDC methods, an important goal of SDC 
should be to minimize the difference in the statistical 
properties of the perturbed data and the original data. 

Using this assumption, an approach to measuring data 
utility is based on benchmarking indicators (Ichim and 
Franconi, 2010; Templ, 2011).

The first step to this approach is to determine what 
kind of analysis might be conducted using the released 
data and to identify the most important or relevant 
estimates (i.e., benchmarking indicators), including 
indicators that refer to the sensitive variables in the 
dataset. 

After applying SDC methods to the original data 
and obtaining a protected dataset, assessment of 
information loss proceeds as follows: 

1. Select a set of benchmarking indicators

2. Estimate the benchmarking indicators using the 
original microdata

3. Estimate the benchmarking indicators using the 
protected microdata

4. Compare statistical properties such as point 
estimates, variances or overlaps in confidence 
intervals for each benchmarking indicator

5. Assess whether the data utility of the protected 
micro-dataset is high enough for release

Alternatively, for Steps 2 and 3, we can fit a regression 
model on the original and modified microdata 
respectively and assess and compare statistical 
properties, such as coefficients and variances. This idea 
is similar to the information loss measure lm described 
in Section 5.1.

If Step 4 shows that the main indicators calculated 
from the protected data differ significantly from those 
estimated from the original dataset, the SDC procedure 
should be restarted. It is possible to either change some 
parameters of the applied methods or start from scratch 
and completely change the choice of SDC methods.

The benchmarking indicator approach is usually 
applied to assess the impact of SDC methods on 
continuous variables. But it is also applicable to 
categorical variables. In addition, the approach can be 
applied to subsets of the data. In this case, benchmarking 
indicators are evaluated for each of the subsets and the 
results are evaluated by reviewing differences between 
indicators for original and modified data within each 
subset. 
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6. Practical Guidelines
This section offers some guidelines on how to implement 
SDC methods in practice. Figure 2 presents a rough 
representation of a common workflow for applying 
SDC. 2

Pre-processing steps are crucial, including 
discussing possible disclosure scenarios, selecting 
direct identifiers, key variables and sensitive variables, 
as well as determining acceptable disclosures risks and 
levels of information loss. 

The actual SDC process starts with deleting direct 
identifiers. 

For categorical key variables, before applying any SDC 
techniques, measure the disclosure risks of the original 
data, including record-level and global disclosure risks, 
and identify records with high disclosure risks, such as 
those violating k-anonymity (typically 3-anonymity). 
Every time an SDC technique is applied, compare the 
same disclosure risk measures and assess the extent of 
information loss (for example, how many values have 
been suppressed or categories combined). 

For continuous key variables, disclosure risks are 
measured by the extent to which the records in the 
perturbed dataset that can be correctly matched with 
those in the original data. Therefore, the disclosure 
risk is by default 100% for the original dataset. After 
applying any SDC method, disclosure risk measures 
are based on record linkage approaches introduced in 
Section 3.6. The risk measure should be compared and 
assessed together with information loss measures, such 
as IL1s and differences in eigenvalues introduced in 
Section 5.1.  

For both categorical and continuous key variables, 
information loss should be quantified not only by 
direct measures, but also by examining benchmarking 
indicators.  Data are ready to be released when an 
acceptable level of disclosure risk has been achieved 
with minimal information loss. Otherwise, alternative 
SDC techniques should be applied and/or the same 
techniques should be repeated with different parameter 
settings. 

In this section, we provide some practical guidelines 
on common questions, such as how to determine 

2 Note that the figure only includes SDC methods introduced in 
this guideline, excluding methods such as simulation of synthetic 
data.

key variables and assess levels of risks, and how to 
determine which SDC methods to apply. 

6.1 How to Determine Key Variables

Most disclosure risk assessment and SDC methods 
rely on the selected key variables, which correspond to 
certain disclosure scenarios. In practice, determining 
key variables is a challenge, as there are no definite 
rules and any variable potentially belongs to key 
variables, depending on the disclosure scenario. 
The recommended approach is to consider multiple 
disclosure scenarios and discuss with subject matter 
specialists which scenario is most likely and realistic. 

Start

Relese data

Original data

Release data

Delete direct identifiers

Micro-
aggregation

Local

 
supperession

Disclosure risk too high

 

and/or data utility too low

Recording PRAM Adding 
noise Shuffling

Categorical

Continuous

Key variables

Assess risk 
data utility

Assess 
risks

Assess possible disclosure 
scenarios, identify key variable and sensitive 

variable determine acceptable risks and 
information loss

Figure 2: A workflow for applying common SDC methods to 
microdata
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A common scenario is where the intruder links the 
released data with external data sources. Therefore, 
an important pre-processing step is to take inventory 
of what other data sources are available and identify 
variables which could be exploited to link to the released 
data. In addition, sensitive variables containing 
confidential information should also be identified 
beforehand.

6.2 What is an Acceptable Level of
Disclosure Risk versus Information
Loss

Assessment of data utility, especially the benchmarking 
indicators approach, requires knowledge of who 
the main users of the data are, how they will use the 
released data and, as a result, what information must 
be preserved. If a microdata dissemination policy 
exists, the acceptable level of risk varies for different 
types of files and access conditions (Dupriez and Boyko, 
2010). For example, public use files should have much 
lower disclosure risks than licensed files whose access 
is restricted to specific users subject to certain terms 
and conditions. 

Moreover, a dataset containing sensitive information, 
such as medical conditions, might require a larger 
extent of perturbation, compared to that containing 
general, non-sensitive information.

6.3 Which SDC Methods Should be
Used

The strength and weakness of each SDC method are 
dependent on the structure of the dataset and key 
variables under consideration. The recommended 
approach is to apply different SDC methods with 
varying parameter settings in an exploratory manner. 
Documentation of the process is thus essential to make 
comparisons across methods and/or parameters and 
to help data producers decide on the optimal levels 
of information loss and disclosure risk. The following 
paragraphs provide general recommendations.

For categorical key variables, recoding is the most 
commonly used, non-perturbative method. If the 
disclosure risks remain high after recoding, apply local 
suppression to further reduce the number of sample 
uniques. Recoding should be applied in such a way so 
that minimal local suppression is needed afterwards.

If a dataset has large number of categorical key 
variables and/or a large number of categories for the 

given key variables (e.g., location variables), recoding 
and suppression might lead to too much information 
loss. In these situations, PRAM might be a more 
advantageous approach. PRAM can be applied with 
or without prior recoding. If PRAM is applied after 
recoding, the transition matrix should specify lower 
probability of swapping. 

In addition, for sensitive variables violating 
l-diversity, recoding and PRAM are useful methods for 
increasing the number of distinct values of sensitive 
variables for each group of records sharing the same 
pattern of key variables.

For continuous variables, micro-aggregation is a 
recommended method. For more experienced users, 
shuffling provides promising results if there is a well-
fitting regression model that predicts the values of 
sensitive variables using other variables present in the 
dataset (Muralidhar and Sarathy, 2006). 

7. An Example Using SES Data
In this section, we use the 2006 Austrian data from 
the European Union SES to illustrate the application 
of main concepts and procedures introduced above. 
Additional case studies are available in Templ et al. 
2014a. The SES is conducted in 28 member states of 
the European Union as well as in candidate countries 
and countries of the European Free Trade Association 
(EFTA). It is a large enterprise sample survey containing 
information on remuneration, individual characteristics 
of employees (e.g., gender, age, occupation, education 
level, etc.) and information about their employer (e.g., 
economic activity, size and location of the enterprise, 
etc.). Enterprises with at least 10 employees in all 
areas of the economy except public administration are 
sampled in the survey.  

In Austria, a two-stage sampling is used: in the 
first stage, a stratified sample of enterprises and 
establishments is drawn based on economic activities 
and size, with large-sized enterprises having higher 
probabilities of being sampled. In the second stage, 
systematic sampling of employees is applied within 
each enterprise. The final sample includes 11,600 
enterprises and 199,909 employees.

The dataset includes enterprise-level information 
(e.g., public or private ownership, types of collective 
agreement), employee-level information (e.g., start 
date of employment, weekly working time, type of work 
agreement, occupation, time for holidays, place of work, 
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gross earning, earnings for and amount of overtime, etc.), 
and information from registers (e.g., age, occupation, 
education, enterprise size, size of enterprise, sectors 
and economic activities classifications). 

7.1 Determine Key Variables

No direct identifiers, such as social insurance number, 
name or exact address, are included in the dataset. 
Therefore, we proceed directly to determining key 
variables according to disclosure scenarios.

Two disclosure scenarios are identified: one for 
enterprise re-identification and the other for employee 
re-identification. In the enterprise scenario, an intruder 
could use publicly available business registers to re-
identify an enterprise sampled in the survey. These 
registers usually contain information on name, address, 
number of employees, economic activities, location, etc. 
Among these, the following variables are also included 
in SES data: size, location, economic activity3. We 
select these three variables as the enterprise-level key 
variables. 

On the employee level, we assume that personal-
level information, such as age and sex, can be combined 
with enterprise information to identify individuals. 
Moreover, the intruder will be particularly interested 
in high-earning employees. We therefore include 
the following employee-level key variables: age, sex, 
earnings, and overtime earnings. A more detailed 
process for determining key variables in the SES data is 
available in Ichim and Franconi (2007). 

7.2 Risk Assessment for Categorical
Key Variables

After selecting the key variables, we assess record-
level risk measures for categorical key variables 
(i.e., size, location, economic activity, age and sex). 
We use sdcMicro and/or sdcMicroGUI package4 
  (Kowarik et al., 2013; Templ et al., 2014b)  to calculate 
disclosure risks, including the number of records that 
violate 2-anonymity or 3-anonymity, number of records 
with risks higher than the main part of the data, and the 
expected number of re-identifications. 

3 Statistical classification of economic activities in the European 
Community (NACE).

4 Detailed guides on how to use sdcMicro (Templ et al. 2013) 
and sdcMicroGUI (Kowarik et al. 2013; Templ et al. 2014b) are 
available in separate documents.

Listing 1: Record-level and global risk assessment measures of 
the original SES data

Number of observations violating
− 2−anonymity: 11212
− 3−anonymity: 23682
−−−−−−−−−−−−−−−−−−−−−−−−−−
Percentage of observations violating
− 2−anonymity: 5.61 %
− 3−anonymity: 11.85 %
−−−−−−−−−−−−−−−−−−−−−−−−−−
0 observations with higher risk than the main part
Expected number of re−identifications:
8496.45 [4.25 %]
−−−−−−−−−−−−−−−−−−−−−−−−−−

The output in Listing 1 from sdcMicroGUI indicates 
a large number of records possessing unique patterns 
of selected categorical key variables (about 5.61% of 
the total observations violated 2-anonymity). All in all, 
4.25% of the records are expected to be re-identified. 
In addition, the global risk using log-linear models5 is 
estimated to be 2.22% in the original data. 

7.3 SDC of Categorical Key Variables

To reduce the number of sample uniques (in this 
example, the goal is to achieve 3-anonymity), we start by 
recoding the economic activities from 2-digit to 1-digit 
codes. The recoding is based on expert knowledge 
about which economic activities are similar and can be 
combined. We also recode the age of the employees into 
six age groups (less than or equal to 15; 16 to 29; 30 to 
39; 40 to 49; 50 to 59; and greater than or equal to 60). 
After performing the recoding of key variables, we re-
calculate the sample frequency counts and obtain the 
following.

Listing 2: Frequency calculation after recoding

Number of observations violating
− 2−anonymity: 12
− 3−anonymity: 22
−−−−−−−−−−−−−−−−−−−−−−−−−−
Percentage of observations violating
− 2−anonymity: 0.01 %
− 3−anonymity: 0.01 %
−−−−−−−−−−−−−−−−−−−−−−−−−−
0 observations with higher risk than the main part
Expected number of re−identifications:
51.01 [0.03 %]
−−−−−−−−−−−−−−−−−−−−−−−−−−

5 Global risk measure based on log-linear models can be calculated 
using sdcMicro (Templ et al. 2013), but is not available in 
sdcMicroGUI. 
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We see that record-level disclosure risks decreased 
dramatically after recoding. For example, only 0.03% 
of the records is expected to be re-identified, compared 
to 4.25% in the original data (Listing 1). Meanwhile, 
our measure of global risk using log-linear models has 
dropped to 0. 

We notice, however, that 22 observations still violate 
3-anonymity. We further apply local suppression, and 
suppress 4 values for the variable size, and 14 values 
for the variable age. Depending on the expected goals 
discussed before the SDC process, these steps may have 
already sufficiently reduced the disclosure risks. 

An alternative here is to apply PRAM to the location 
variable, swapping values between categories using 
pre-specified probabilities. The higher the probabilities, 
the more perturbation of data, and thus the greater 
reduction of disclosure risks. 

7.4 SDC of Continuous Key Variables

For continuous key variables (i.e., earnings and 
overtime earnings), we apply micro-aggregation 
(MDAV method) partitioning records into groups of 
3 based on classical Euclidean distances (Domingo-
Ferrer and Mateo-Sanz, 2002) and assigning the 
arithmetic mean to each group. By setting group size 
to three, 3-anonymity is achieved with respect to the 
earnings variables. 

Alternatively, we can add correlated noise to 
earnings and overtime earnings. Here we set noise 
level at 150, defined as the percentage of co-variance of 
the continuous key variable in the original data.

We also applied shuffling by fitting a regression 
model that predicts overtime earnings and earnings 
using location, gender, age, education, occupation and 
type of contract as predictors. 

After each SDC method is applied on the continuous 
key variables, we examine the risk and information 
measures. For example, Listing 3 presents the risk 
and information loss measures after adding noise. The 
measure of disclosure risk presented below uses the 
interval disclosure approach (described in Section 3.6). 
Recall that the interval disclosure approach constructs 
an interval around each masked value, and examines 
whether the original value falls within the interval. The 
upper bound of the risk measure shown in Listing 3 
indicates the proportion of the original values that fall 
within the interval, assuming the worst-case scenario 

where every original value that falls within the interval 
is a correct match with the masked value (i.e. the two 
values refer to the same respondent). Additionally, 
Listing 3 shows two direct measures of information 
loss, IL1 and differences in eigenvalues. 

Listing 3: Disclosure risks and information loss after applying 
microaggregation (MDAV, k=3) to continuous key variables

Number of observations violating
Disclosure Risk is between: 
 [0%; 61.42%] (current)

  (orig: ~100%)
-Information Loss:
 IL1: 0.11
-Difference Eigenvalues: -0.64%

(orig: Information Loss: 0)

7.5 Assess Information Loss with
Benchmarking Indicators

We use the benchmarking indicator approach to assess 
information loss and data utility resulting from SDC. 
We assume that one of the most interesting indicators 
for users of the SES data is the Gender Pay Gap, i.e., 
the difference in hourly earnings between men and 
women. Thus, our goal is to ensure that the estimate 
of the Gender Pay Gap using the perturbed data is 
very close to the estimate using the original data. We 
also assume that many users are interested in the 
relation between hourly earnings and sex, age, location, 
economic activity and education variables. Therefore, 
if we estimate log hourly earnings using the perturbed 
data and the original data, we should expect similar 
coefficients on the predictor variables. 

To illustrate how to compare across SDC methods, 
Figure 3 shows the regression coefficients and confidence 
intervals estimated using the original data (in black), 
in comparison to the estimates from anonymized data 
(in grey). The SDC methods compared in this example 
include recoding of economic activity (recoded from 
52 classes to 15) and age (recoded into 6 age groups), 
PRAM applied to location and shuffling (as described 
in Section 7.4). 

Assuming the level of disclosure risk is the same, 
recoding, local suppression and micro-aggregation 
seem to perform the best among the four results, as 
shown in Figure 3(a), especially since the confidence 
intervals obtained from the perturbed data cover 
almost completely the confidence intervals obtained 
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from the original data. Almost as good are the results 
after applying recoding, local suppression and adding 
correlated noise, as shown in Figure 3(b). 

Most coefficients are preserved after applying 
PRAM and micro-aggregation, except the coefficient on 
economic activity (Figure 3c). This is not surprising, 

since we swapped the categories of economic activity 
when we applied PRAM.  

Fewer coefficients are preserved after applying 
recoding, local suppression and shuffling. This is 
because even if the relation between the variables 
specified in the shuffling model (i.e., between earnings 

(a) Recoding, local suppression and micro-aggregation (b) Recoding, local suppression and adding correlated noise

(c) PRAM and micro-aggregation (d) Recoding, local suppression and shuffling

Figure 3: Comparing SDC methods by regression coefficients and confidence intervals estimated using the original estimates (in black) and 
perturbed data (in grey)
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and sex, age and education) is well preserved, the 
relation between earnings and variables not included in 
the shuffling model (e.g., location, economic activity) 
might not be preserved. Specifying a better-fitting 
model for shuffling might generate better results in this 
case.
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Acronyms
DIS Data Intrusion Simulation 
EFTA European Free Trade Association
IHSN International Household Survey Network
MAD Median Absolute Deviation
MDAV Maximum Distance to Average Vector 
MSU Minimal Sample Unique
NACE Statistical Classification of Economic Activities in the European Community 
NSO National Statistical Office
OECD Organisation for Economic Co-operation and Development
PRAM Post-Randomization Method 
RMD Robust Mahalanobis Distance
SDC Statistical Disclosure Control
SES European Union Structure of Earnings Statistics 
SUDA Special Uniques Detection Algorithm
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