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1 Introduction

In most countries, national statistical agencies conduct sample surveys to
collect data on household expenditure or consumption. Such surveys may be
referred to as household budget surveys, household income and expenditure
surveys, welfare monitoring surveys, or other. Using different methods (re-
call interviews or use of diaries), information is obtained from respondents
on their spending on food and non-food goods and services. Many countries
will design their survey questionnaires following the international Classifi-
cation of Individual Consumption by Purpose (COICOP). The information
obtained from respondents can be more or less detailed (from a few dozen
categories of products and services to thousands of very specific products and
services). In countries where own-production of goods represents a significant
share of household consumption, the value of self-produced goods consumed
by households is also measured. Last, some values may be obtained by impu-
tation (such as use-value of durable goods, or rental value of owner-occupied
dwellings).

Consumption or expenditure data are used for multiple purposes. Typi-
cal use include the establishment of weighting coefficients for the calculation
of consumer price indices, the compilation of national accounts, or the mea-
surement of poverty and inequality.

Producing such data is complex – for the survey statistician, as well as
for the respondents. Errors are made at various stages of data production
(by the respondents, by the interviewers, and during data capture). These
errors include the introduction of “impossible” expenditure values, i.e. values
that are too high or too low to be plausible. These outlying values may have
a significant impact on some types of analysis (e.g., inequality indicators,
or regression coefficients, can be significantly impacted by a few number of
extreme values in a dataset). We are thus interested in detecting them, and
in fixing the issue by replacing implausible values with more realistic ones.
Detecting outliers, and distinguishing those that are “errors” from those that
are unusually high (or low) but correct values, is a challenge. Making these
corrections in the microdata (i.e. in data at the household level) instead of
at the aggregated level (in results tables), adds to the challenge.

There is a rich literature devoted to the issue. But no common “best
practice” has emerged from it. Different agencies adopt different solutions,
some of them too radical – at the risk of creating bias and corrupting their
data files.
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To assess the relevance and impact of various outliers detection and im-
putation methods, the World Bank and the International Household Survey
Network commissioned a comprehensive review of existing algorithms, in-
cluding an assessment of their implementation on actual survey datasets.
This report presents the main findings of this work.

This study was sponsored by a Trust Fund from the Department for In-
ternational Development of the United Kingdom, administered by the World
Bank Development Data Group (TF011722).

Outline:

In Section 2 some problems are mentioned. This covers missing information
in the surveys which needs to be assumed as zero value, and structural zeros.
Also problems with sparse components are mentioned, the concrete strategies
to aggregate components are given in 6 and 6.1.4. In addition, a discussion
about the types of outliers is included.

Section 3 gives a detailed description of univariate outlier detection while
Section 4 discusses multivariate outlier detection methods. Section 5 de-
scribes how the outliers are imputed/replaced. In the numerical study (Sec-
tion 6), the results on consumption data are provided. There is detailed
analysis for the data from the Albania Living Standards Survey 2008 in-
cluded and tables that summarizes all results for the Gini for each country.
A simulation study gives further insights about the quality of the methods.

All code for the methods described in this final report is provided to
the World Bank in form of the unpublished R package robout. Next to the
code for the methods, it includes examples of applications of the package on
simulated and real data.

2 Some basics and challenges

In the literature the term“outlier”is not defined uniformly and many different
definitions can be found. In general, it can be said that an outlier is a data
point which deviates from the data structure formed by the data majority.
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2.1 Robust estimation or outlier detection

Outlier detection and robust estimation are closely related (see Hampel et al.
1986; Hubert et al. 2008) and robust estimation (find an estimate which is
not influenced by the presence of outliers in the sample) and outlier detection
(find all outliers, which could distort the estimate) are similar tasks. A
solution of the first problem allows us to identify the outliers using their
robust residuals or distances while on the other hand, if we know the outliers
we could remove or downweight them and then use the classical estimation
methods [Hulliger, 2007, Todorov et al., 2011].

In many research areas the first approach is the preferred one but for the
purposes of official statistics the second one is more appropriate. This is espe-
cially true if the organizations deliver micro-data for general and public use,
but also for use in different departments in the same organization. Hereby,
it is hard to imagine that a non-expert user of this data set will employ
the same sophisticated robust techniques that the statistician has applied to
those parts of the data set containing outliers [Hulliger, 2007]. Therefore the
aim is to deliver an outlier-free data set, with outlier values appropriately
modified, such that the data set is suitable for general use with standard
statistical software and classical estimation methods. This can be achieved
by using an outlier imputation procedure.

The focus in this work is on using robust methods to identify
the outliers and to impute them so that the data can be treated in
the traditional way afterwards.

2.2 Sampling weights

One of the unique features of the outlier detection problem in the analysis of
survey data is the presence of sampling weights. For example, in a survey the
sample design might be defined in such a way that households are sampled
proportional to size in each region and all persons in a household are included
in the survey. The sampling weights are (calibrated) inverses basically coming
from the inclusion probabilities of units in the sampling frame considering also
non-responses and, possibly, calibration on known population characteristics.
These sampling weights are used in the estimation procedure and therefore
may not be left unaccounted for in the phase of data cleaning and outlier
detection [Todorov et al., 2011].
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2.3 Imputation of outliers

Imputation methods have traditionally been used for item non-responses.
The basic idea in this case is that by “filling in” the missing values in a data
set, standard methods of inference are applicable.

Imputations are necessary after outlier identification, i.e. once the outliers
in the survey data have been identified and classified, the outliers may be
imputed. In any case, non-representative outliers are very similar in concept
to missing data since from both these values are wrong and should be changed
to plausible values [Hulliger, 2007, Hulliger et al., 2011]. These values can be
derived from the non-outliers in the survey data set.

2.4 Structural zeros

In consumption surveys, zero values for the consumption of particular items
are frequent as one cannot expect all households to consume all possible
items. For example, considering components on consumptions, a person will
only have consumptions in transport services if a transport service was used
in the reference year.

For particular components, the amount of zeros can be quite high and
multivariate outlier detection algorithms may fail if the number of zeros
is above a certain threshold. Observations could even become outliers be-
cause of zeros when multivariate detection methods are applied. Assume
two-dimensional bivariate normal data. If one observation has a zero in the
first variable, the observation may easily become a multivariate outlier. An
example for this phenomenon is illustrated in Figure 1 where one value is
replaced by a zero.

There are multiple strategies to deal with zeros:

• apply only univariate outlier detection on the observed values (in Sec-
tion 3);

• impute zeros and apply multivariate outlier detection (in Section 4).

Figure 1 shows the problem of structural zeros on a simple two-dimensional
toy data example. The observation x1 is in the center of the data cloud and
is surely not an outlier. However, when assuming that x1 includes a zero, i.e.
we put a zero in x1 to get x∗1, then the observation x∗1 will be flagged as an
outlier if multivariate outlier detection methods are applied. To adequately
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Figure 1: Two-dimensional toy example where for one observation x1, its
value on the x-axis is replaced by a zero (x∗1). The observation immediately
becomes a multivariate outlier only because of the zero.

deal with zeros is therefore essential for any outlier detection method. For
example, a zero on expenditures for food would be unrealistic, but it could
be true for expenditures on transportation.

2.5 Aggregation of sparse components

Generally, before applying multivariate outlier detection algorithms on very
sparse components, one has to think of reducing the dimensions by aggre-
gation of components, while holding the loss of information minimal. The
aggregation of components is further investigated in this section.

2.6 Deterministic methods and selective editing

Techniques such as selective editing (see, e.g., Lawrence and McKenzie 2000),
automatic editing (De Waal 2003; Fellegi and Holt 1976) and macro-editing
[see, e.g., Granquist, 1990] can be applied instead of the traditional micro-
editing approach, where all records are extensively edited manually [e.g.,
De Waal, 2009].
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2.6.1 Automated deterministic editing

Automatic editing is done by formulating a framework for both, the auto-
matic construction of implicit edits and a linear programming algorithm to
edit the data in an optimized manner automatically [Fellegi and Holt, 1976]
using heuristic approaches for large data sets. NSO’s often use these kind of
methods and correct the collected data in detail. This process can be error-
prone, because editing rules determined by subject matter specialists may
destroy the multivariate structure of the data and in case of survey data,
sampling errors may cause that correct data entries are marked as incor-
rect by deterministic rules [see also Chambers et al., 2004, De Waal, 2009,
Todorov et al., 2011] . Establishing editing rules is highly time-consuming
and resource intensive and often represents a significant part of the costs of
the whole survey [Chambers et al., 2004, Todorov et al., 2011].

2.6.2 Selective editing

Selective editing is closely related to the concept of the influence function
in robust statistics (in both concepts, the effect of each observation on an
estimator is measured), i.e. selective editing detects those statistical units
which highly influence one (or a few) pre-defined measure(s). However, usu-
ally many different estimates are obtained from the same data set and those
outliers which do only have high influence on the measures as used in the
selective editing process are not detected.

Due to the mentioned disadvantages of automatic editing procedures, we
will focus on non-deterministic methods.

2.6.3 Errors resulting from measurement units

In many surveys, some values are calculated by multiplying measures of quan-
tities by unit values. The quantities are reported in many different units,
some non-standard. Reporting and data capture errors in the quantities may
cause outliers (e.g., using the unit code for kilos when the quantity is actually
reported in grams would inflate the true value by 1000).

Algorithms are available to detect and repair observations that violate
linear equality constraints by correcting simple typo’s. However, a set of
deterministic edits has to be defined first. Such edits are usually country-
specific and data-related. Thus, such algorithms are not ideally suited for
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detecting errors in standardized data sets from many countries since too
many manual work must be invested to define the edits.

2.7 A brief description of the various types of outliers

Virtually any data set in survey statistics contains outlying values. This is
especially true for consumption data. Dupriez [2007] claims that outliers in
food consumption often seem to come from errors in quantity measurement
units (many values are around 1,000 or 100 times the mean of valid values,
indicating that grams (or ml) and kilos (or liters) may have been mixed,
or that decimal points may have been missed). The detection of this kind
of measurement errors is usually rather simple compared to other kinds of
outliers. Since the distribution of many expenditure variables is skewed to the
right, outliers are more obvious in the very right tail of the distribution rather
than in the lower tail. Outlier detection methods which first symmetrize the
distributions may thus be worthwhile to being considered. The outlying
procedures are applied on variables depending if a variable is measured on
individual (person) level or household level. For example, for some items
(e.g., food, transport services, personal effects), the outliers are detected
using per capita values.

2.7.1 Univariate versus multivariate outliers

Univariate outlier detection usually leads to quite different results than mul-
tivariate outlier detection. This will be illustrated in the following by the
so-called bushfire data set with 38 observations in 5 variables (Campbell,
1989). The data set contains satellite measurements on five frequency bands,
corresponding to each of 38 pixels and it is used to locate bushfire scars.
This data set is very well studied (Maronna and Yohai, 1995; Maronna and
Zamar, 2002) and this is the reason why it is considered here for illustration
purposes. It is known that it contains 12 clear outliers, the observations 33-
38, 32, 7-11; 12 and 13 are suspect. The data set is available in the R package
robustbase. Figure 2a shows boxplots of all variables in this data set. Only
three observations are detected as outliers using the boxplot approach (see
Section 3.1). Similar results are obtained using any of the other univariate
outlier detection methods. In Figure 2b the raw data from the second and
third variable are shown. Figure 2c shows the region (within the blue rectan-
gle) of outlier-free observations. Everything outside the rectangular region is
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defined as outlier according to a univariate outlier detection rule. The result
of a univariate outlier detection is always a rectangular region, not consid-
ering the multivariate structure of the data. When applying multivariate
outlier detection (considering all variables) using classical estimates of the
covariance matrix, we see that not even one observation is identified as an
outlier in Figure 2d. However, if robust multivariate methods are used, the
outliers are detected (see Figure 2e). This clearly indicates advantages of
robust multivariate outlier detection methods.

Consumption/expenditure data are multivariate, thus multivariate meth-
ods should be applied for detection of outliers.

2.7.2 Bottom outliers

Bottom outliers are considered by many outlier detection methods as soon as
the data are transformed to a symmetric distribution, e.g. by log-transformation.
These methods are based on thresholds, and these thresholds are defined by
lower and upper quantiles of the distribution of a single variable (univariate
methods) or by distances to a multivariate center (multivariate methods).
For univariate methods usually only outliers in the upper tail of the distribu-
tion are imputed, since low values have no serious effect on classical indicators
such as the Gini coefficient. However, it depends on the underlying question:
For other uses of consumption data, such as measurement of nutrition and
food vulnerability, the bottom outliers are important. For multivariate out-
lier detection, observations with large distance to the multivariate data center
with respect to the covariance structure are imputed, i.e. bottom and top
outliers are treated in the same manner. More on imputation of multivariate
outliers is given in Section 5.

2.7.3 Valid / invalid outliers

Outliers may be representative (extreme but true values) or non-representative
(measurement errors) (Chambers 1986). An outlier detection procedure typ-
ically flags not only measurement errors but also correct entries, which do
have an abnormal behavior compared to the main bulk of the data. In other
words, outliers can be errors or true (extreme) values, but both can have
a large influence on the estimates and it is reasonable to detect them. In
practice it is not always possible to distinguish if an outlying value is the re-
sult of measurement errors or a genuine, but extreme observation. Therefore,
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based on classical estimates.
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Figure 2: Univariate and multivariate outlier detection on the bushfire data
to show advantages of multivariate outlier detection methods.
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methods for outlier detection can not truly detect outliers, but detect data
points which have the potential of being an outlier.

It is the characteristic of a representative outlier that additional similar
elements can be found in the population. The outlier is therefore “represen-
tative” for these elements. When carrying out estimations including repre-
sentative outliers, the influence of the representative outliers can be reduced,
for example, by reducing the sample weight of the observation.. Reducing
the weights can be seen from two aspects. First it can be assumed that fewer
outliers are in the population as the sampling weights suggested. Then it
is natural to decrease the sampling weight of outliers. The second aspect
covers the reduction of the influence of representative outliers to the variance
of an indicator. On the one hand, by reducing the influence of representative
outliers, bias might be introduced. On the other hand, the influence of repre-
sentative outliers on the variance can be reduced. An optimal method might
therefore be defined by having a minimal square error criterion (minimizing
(variance + bias2)).

3 Univariate outlier detection methods

In terms of considering single variables, potential outliers are solely those
points which are ”far enough” away from the main bulk of the data. In order
to locate these points, one way is to measure scale and location of a data
sample in a robust way. For example, all observations which are outside the
range of location plus/minus multiple times the scale can be considered as
potential outliers.

For this section we will suppose a sample s (with fixed sample size n ≤ N)
which has been drawn, according to the sampling design p(S), from the finite
population U = {1, . . . , N}. Furthermore, to each sampled element in s a
weight wi is attached that reflects the sample inclusion probability πi. In
addition we have that wi = 1

πi
, where πi =

∑
i∈s,s∈S

p(s), i = 1, . . . , N , and we

assume that
∑
i∈s
wi = N .

3.1 Robust location ± constant ∗ robust scale

As mentioned above, a common practice for univariate outlier detection is
to take robust measures of location and scale to check which points deviate
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from the rest of the data.

Robust location
A very common, but nor robust, measure for location is the arithmetic mean
x = 1

n

∑n
i=1 xi. Since the arbitrary change of only one single observation can

change the mean x to any position, the arithmetic mean has a breakdown
point of 0% (it is not robust to any small amount of contamination). A more
suitable, robust measure of location is the median (med). For a random
variable X with distribution F , the median is defined by

P(X ≥ med) = F (med) = 0.5.

For a data sample (x1, . . . , xn) the median is determined by

med =

{
x(bn/2c+1) . . . n odd
1
2
(x(n/2) + x(n/2+1)) . . . n even,

where x(1) ≤ x(2) ≤ . . . ≤ x(n) denotes the ordered sample, and bac means
truncating a to the largest integer ≤ a. The median achieves the maximum
breakdown point of 50%, i.e. up to 50% of any observations in the data
set could be modified without causing an arbitrary change of the estimator.
Taking into account sample weights wi, i = 1, . . . , n, the pth quantile, Q̂p, is
given by solving the estimating equation∑

i∈s

wi[1
{
xi ≤ Q̂p

}
− p] = 0. (1)

The weighted sample median is obtained by p = 0.5 and has a breakdown
point of 0%. This is demonstrated by the following example. It is easy to
see that the sample median in Table 1 equals 5, while the weighted median
is influenced so heavily by the last weight, that it equals 11. Therefore the
weighted median needs only be influenced by one out of n data points at any
arbitrary position to break down which results in a breakdown point of 0%.

However, in practical applications with comparable large sampling weights,
the weighted median turns out to be quite robust. This is especially true if
the weights do not depend on the size of the data values.
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data weights
1 3
3 2
4 1
5 2
7 4
10 3
11 25

Table 1: Data set showing that the weighted median has a breakdown point
of 0%.

Robust scale
The most common estimator of scale of a sample is the empirical standard

deviation, defined as S =
√

1
n−1

∑n
i=1(xi − x)2. Since this estimator is not

robust, it is a poor choice in the context of outlier detection. A more robust
way to estimate the scale is by using the sample quartiles. Namely, the first
and third quartiles (Q1 and Q3) which are defined, for a random variable X
with distribution F , by

P(X ≤ Q1) = F (Q1) = 0.25

P(X ≤ Q3) = F (Q3) = 0.75.

To attain a robust measure of scale, the so called interquartile range (IQR)
can be used, which is defined by the difference of the third and the first
quartile

IQR = Q3 −Q1.

The IQR has a breakdown point of 25% and is therefore more suited in case
of outliers than the empirical standard deviation.

Considering sample weights wi, i = 1, . . . , n, the first and third weighted
quartiles are determined by solving Equation (1) for p = 0.25 and p = 0.75.
The weighted interquartile range has, like the weighted sample median, a
breakdown point of 0%. However, the more similar the sampling weights,
the more robust becomes the estimator.
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Another way to robustly measure the scale is the so called median absolute
deviation (MAD). It is defined for a random variable X as

P(|X −med| ≤MAD) = 0.5.

For a data sample (x1, . . . , xn) the MAD is determined by

MAD = med
i
|xi −med

j
(xj)|.

The MAD achieves the maximal breakdown point of 50% .
To calculate MAD with sample weights wi, i = 1, . . . , n, one has to solve

Equation (1) for p = 0.5 to obtain the weighted median Q̂0.5. Using Equa-
tion (1) once again on |xi − Q̂0.5|, the estimation equation for the weighted
MAD (MADw) is presented by∑

i∈s

wi[1
{
|xi − Q̂0.5| ≤MADw

}
− 0.5] = 0.

Both, IQR and MAD are not consistent estimators of the scale parameter
σ. Assuming that the data come from a normal distribution, consistent
estimators are

SIQR =
IQR

1.35

SMAD =
MAD

0.675
.

Detecting potential outliers
To detect potential outliers it is quite common to use the median plus/minus
a constant c, c ∈ R, times a robust measure of scale to determine a range
at which the data points are not considered outliers. Points that lie outside
this interval are potential outliers. In our context this results in the following
intervals

[med − c · SIQR , med + c · SIQR] (2)

[med − c · SMAD , med + c · SMAD]. (3)

Depending on the type of problem the choice of c differs. In many cases c
will be chosen equal to 3, since, considering that the data sample is normally
distributed, the interval [µ± 3σ], with µ the expectation and σ the standard
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deviation, overlaps just over 99% of the possible realizations.

[Dupriez, 2007], for example, used 5 times IQR which is relatively con-
servative (high value of the constant), but the impact of fixing these outliers
on the total consumption and on its distribution is significant.

Figure 3 illustrates the use of the boundaries from Equation (2) and (3),
with c = 3, for outlier detection on a simulated data set with sample weights
equal to 1 (upper plot) and with sample weights that increase in accordance
to the value of the data points (lower plot). The five lowest and five highest
points of the simulated data have been drawn from a distribution smaller
respectively larger mean than the distribution of the main body of the data.
In the upper part of Figure 3 one can see that with the use of IQR and
MAD for outlier detection the four lowest and five highest points would be
declared as potential outliers. Therefore, almost every data points which
was generated by a different mechanism than the main bulk of the data was
declared a potential outlier. The lower part of Figure 3 shows the influence of
the sample weights on the estimates. The boundaries for weighted IQR and
weighted MAD as well as the weighted median have been shifted slightly to
the right due to the weights. This is due to the design of the sample weights,
since the sample weights positively depend on the value of the data points.

Box-Cox transformation
For very skewed data the above mentioned methods for outlier detection
could prove to be problematic, since the interval in which data points are not
considered to be outliers is symmetric around the median. To adjust for this
issue, Box and Cox [1964] proposed a transformation in order to transform
the data to behave like it was generated from a normal distribution.
The Box-Cox transformation is a parametric family of transformations from
xi to x

(λ)
i , i = 1, . . . , n, with the parameter λ defining a particular transfor-

mation. For data xi > 0, the Box-Cox transformation is defined as

x
(λ)
i =

{
xλi −1
λ

λ 6= 0

log(xi) λ = 0.

To determine the appropriate value of λ for a given data sample, Box and
Cox [1964] presented a maximum likelihood as well as a Bayesian approach.
Figure 4 shows the impact of the Box-Cox transformation on outlier detection
methods on a simulated data, following a standard log-normal distribution;
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Figure 3: Outlier detection using IQR, MAD and a boxplot for a data sam-
ple with sample weights equal to 1 (upper plot) and sample weights, which
positively depend on the value of the data points (lower plot).
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the sample has no sample weights. The upper part of the graphic shows
the use of the above mentioned outlier detection methods, using IQR and
MAD, without the Box-Cox transformation. The lower part shows the back-
transformed bounds of the intervals given in Equation (2) and (3) after the
outlier detection has been applied on the Box-Cox transformed data.
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Figure 4: Outlier detection using IQR and MAD without Box-Cox transfor-
mation (upper plot) and back-transformed bounds after outlier detection was
applied on the Box-Cox- transformed data (lower plot).

Calculating the parameter λ for the Box-Cox transformation using a max-
imum likelihood estimate does not account for extreme data values. The
maximum likelihood approach is therefore not robust and outlier detection
schemes could fail to detect potential outliers on the data sample after the
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transformation. To address this problem one can calculate λ in a robust
way by using robust linear regression. Consider a sample of data values
xi, i = 1, . . . , n, xi > 0, which are already sorted in ascending order, and the
linear model

x
(λ0)
i = α + βzi + ui,

with α, β and λ0 as real parameters, and zi as the i
n
th quantile of the stan-

dard normal distribution. Furthermore, the errors ui are considered i.i.d.,
independent of zi and E[ui] = 0. To calculate the true Box-Cox parameter

λ0 one can apply MM-estimation to the responses y
(λ)
i for given λ and choose

λ0 such that the robust residual autocorrelation ρn(λ) is minimized.

Let sn(λ) be a robust measure of the residual scale and ri(λ) = x
(λ0)
i −

α(λ0)+β(λ0)zi for given λ, then the robust residual autocorrelation is defined
by

ρn(λ) =
1

n

n−1∑
j=1

vj(λ)vj+1(λ)

with

vj(λ) = ψ

(
rj(λ)

sn(λ)

)
where ψ(.) is the Huber’s function. Note that the vj’s are always positive.
For more details on robust Box-Cox transformation for linear regression, see
Maronna et al. [2006].

3.2 Boxplot

The boxplot is a widely used graphical tool to visualize the distribution of
continuous univariate data. Fundamental to the boxplot is the five-number
summary which contains the sample minimum, the first quartile (Q1), the
median, the third quartile (Q3) and the maximum. The box ranges from the
first to the third quartile containing per definition 50% of the innermost data
as well as the median which is usually marked by a middle line. To detect if
a point has the potential of being an outlier it depends on whether the point
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is within the range of the so called fences (lower fence LF , upper fence UF ).
The lower and upper fence are defined as follows:

LF = Q1 − 1.5 (Q3 −Q1)︸ ︷︷ ︸
:=IQR

UF = Q3 + 1.5 IQR. (4)

In addition to the fences the boxplot also contains the so called whiskers
which are lines that range from the box to the point which is the farthest
from the box but still inside the fences.
It is possible to incorporate sample weights into the boxplot by using Equa-
tion (1) for weighted sample median and weighted sample quartiles.

3.3 Adjusted Boxplot

By using the position of the median within the box, the length of the box
and the whiskers, the boxplot gives information about the location, spread,
skewness and tails of the data. However, for very skewed data the boxplot
can possibly fail to properly mark potential outliers since the rule for outlier
classification is solely based on location and scale measures and the fences are
derived from the normal distribution. Therefore a boxplot will classify too
many points as outliers if the data are sampled from a skewed distribution.
To adjust the boxplot for skewed data it is possible to incorporate a robust
measure of skewness into the calculations for the fences, which leads to the
adjusted boxplot.

Robust measure of skewness (medcouple)
A robust measure of skewness of a continuous distribution F is the so called
medcouple (MC). It is defined as

MC(F ) = med
x1<mF<x2

h(x1, x2)

with mF as the median of F , x1 and x2 sampled independently from the data
and h as the kernel function given by

h(xi, xj) =
(xj −mF )− (mF − xi)

xj − xi
.

By definition the medcouple always lies between -1 and 1 and takes on pos-
itive values for right-skewed data and negative values for left-skewed data.

20



Brys et al. [2004] showed that this robust measure of skewness has a bounded
influence function and a breakdown point of 25%.

To adjust a boxplot for skewed data one can incorporate the medcouple in
the calculation of the fences. This can be done by using functions hl and hr,
defined in the following, to determine the fences. Thus instead of using the
interval of regular observation as

[Q1 − 1.5 IQR ; Q3 + 1.5 IQR]

one can choose the boundaries of the interval to be defined as

[Q1 − hl(MC) IQR ; Q3 + hr(MC) IQR].

The functions hl and hr are independent from each other allowing for differ-
ent lengths of whiskers. In addition one requires that hl(0) = hr(0) = 1.5 to
obtain the original boxplot for symmetric data.
Vandervieren and Hubert [2008] studied three different models for the choice
of the functions hl and hr, a linear model, a quadratic model and an ex-
ponential model. They come to the conclusion that the exponential model
performed best and proposed for the interval of the fences and the functions
hl and hr

[Q1 − 1.5e−3.5MC IQR ; Q3 + 1.5e4MC IQR].

Dealing with a data sample, including sample weights, one can use Equa-
tion (1) to calculate weighted quartiles and a weighted IQR. Sample weights
will not be incorporated into the medcouple since the factor 1.5e−3.5MC and
1.5e4MC has performed well by the simulations by Vandervieren and Hubert
[2008].

3.4 Pareto tail modeling

Data on household expenditures are typically skewed to the right which im-
plies that potential outliers are more likely detected in the upper tail of the
data distribution. As a consequence, the upper tail of the data distribution
may be modeled with a Pareto distribution (Pareto tail modeling), in order
to re-calibrate the sample weights or fitting data values for observations in
the upper tail.
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Figure 5: Boxplot vs. Adjusted Boxplot

The Pareto distribution has been well studied in the literature, see also
Kleiber and Kotz [2003], and is defined as

Fθ(x) = 1− (
x

x0
)−θ, x ≥ x0

with x0 > 0 as scale parameter and θ > 0 as shape parameter. In Pareto tail
modeling, the cumulative distribution function of the whole data sample is
modeled as

F (x) =

{
G(x) if x ≤ x0

G(x0) + (1−G(x0))Fθ(x) else,
(5)

where G is an unknown distribution function (Dupuis and Victoria-Feser
[2006]).

Values larger than the threshold x0 (i.e. potential outliers) will then be
replaced by a value corresponding to the fitted distribution. There are sev-
eral methods to estimate the threshold x0 and the shape parameter θ. Here
we will focus on the Van Kerm’s rule of thumb (Van Kerm [2007]) to model
x0 and the partial density component estimator to model θ.

Van Kerm’s rule of thumb
The Van Kerm’s rule of thumb represents a suggestion, based on the EU-
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SILC data, for the threshold x0. It is given by

x̂0 := min(max(2.5xw, Q0.98), Q0.97)

with xw as the weighted mean and Q0.98 and Q0.97 as weighted quantiles de-
fined by Equation (1).

Partial density component estimator
The partial density component estimator is an extension of the integrated
squared error (ISE) estimator where the Pareto distribution, for a data sam-
ple x1, . . . , xn, is modeled in terms of the relative excess

yi :=
x(n−k+i)
x(n−k)

, i = 1, . . . , k.

The integrated squared error estimator is then given by minimizing the inte-
grated squared error criterion (Terrell [1990])

θ̂ = argmin
θ

[∫
f 2
θ (y)dy − 2E(fθ(Y ))

]
with fθ(y) as the approximation of the density function of the Pareto distri-
bution given by

fθ(y) = θy−(1+θ).

The partial density component (PDC) estimator minimizes the integrated
squared error criterion using an incomplete density mixture model ufθ. The
PDC estimator is thus given by

θ̂PDC = argmin
θ

[
u2
∫
f 2
θ (y)dy − 2u

k

k∑
i=1

fθ(yi)

]
.

The parameter u can be estimated by

û =
1
k

∑k
i=1 fθ̂(yi)∫
f 2
θ̂
(yi)dy

and can be interpreted as a measure of the uncontaminated part of the sam-
ple.
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Alfons et al. [2013] proposed for the weighted partial density component
estimator with sample weights w1, . . . , wn

θ̂PDC,w = argmin
θ

[
u2
∫
f 2
θ (y)dy − 2u∑k

i=1wn−k+i

k∑
i=1

wn−k+ifθ(yi)

]
,

û =

1∑k
i=1 wn−k+i

∑k
i=1wn−k+ifθ̂(yi)∫

f 2
θ̂
(yi)dy

.

For more detailed information on ISE and PDC, see also Vandewalle et al.
[2007] and Alfons et al. [2013].
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4 Multivariate outlier detection methods

The different variables of the consumption data can be considered jointly.
Thus, if p variables are available, each observation consists of p values with the
corresponding consumption data. An outlier would then be an observation
where the joint multivariate information is different from the multivariate
data distribution of the data majority.

Most multivariate outlier detection methods are based on estimates of
multivariate location and covariance. There are various possibilities to ob-
tain robust estimates of these quantities, and they differ in their statistical
properties. These estimates are then used to determine the outlyingness, e.g.
in terms of a distance measure, like the Mahalanobis distance.

4.1 Mahalanobis distances

Consider p-dimensional observations xi (column vector), for i = 1, . . . , n,
which are collected in the rows of the data matrix X. The traditional esti-
mators of multivariate location and scatter are the sample mean x̄ and the
sample covariance matrix S given by

x̄ =
1

n

n∑
i=1

xi

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)t. (6)

These estimates have very good properties if the data come from a multivari-
ate normal distribution. However, they can be very misleading in presence
of outlying observations. Estimates of location and covariance are needed for
outlier detection methods which are based on the Mahalanobis distance. The
squared Mahalanobis distance MD2

i for an observation xi, for i = 1, . . . , n,
is defined as

MD2
i = (xi − x̄)tS−1(xi − x̄). (7)

In case of multivariate normality, MD2
i follows approximately a chi-square

distribution with p degrees of freedom, χ2
p. Thus, large values of MD2

i are
suspicious to be potential outliers. Taking a certain quantile, like the 97.5%
quantile χ2

p;0.975 of this distribution can be used as an outlier cutoff: observa-
tions for which the MD2

i exceeds this quantile can be declared as potential
outliers.
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It is clear that classical estimators of location (arithmetic mean) and
covariance (sample covariance matrix) are not useful for this kind of outlier
detection since they are themselves influenced by outliers. Thus, robust
counterparts are needed.

Before listing such robust versions, we go in more detail into the prob-
lem of the non-robustness of classical estimators. The outlier identification
procedure based on x̄ and S will suffer from the following two problems
[Rousseeuw and Leroy, 1987]:

1. Masking: multiple outliers can distort the classical estimates of mean
x̄ and covariance S in such a way (attracting x̄ and inflating S) that
they do not get necessarily large values of the Mahalanobis distance,
and

2. Swamping: multiple outliers can distort the classical estimates of mean
x̄ and covariance S in such a way that observations which are consistent
with the majority of the data get large values for the Mahalanobis
distance.

The problems of masking and swamping are the reasons why diagnostic tools
based on classical estimators are unreliable. Also “robustified” procedures
that omit one observation in turn (leave-one-out) and the application of clas-
sical estimators on the remainder will not work, since such a procedure is not
protecting against the effects of multiple outliers.

A reliable procedure for outlier detection based on Mahalanobis distance
thus needs to use robust estimates of location T and covariance C. The
squared robust distance is then defined for a data point xi, i = 1, . . . , n, as

RD2
i = (xi − T )tC−1(xi − T ). (8)

It is quite common to still use the cutoff value χ2
p;0.975, although the exact

distribution of RD2
i will depend on the choice of T and C. In Maronna

and Zamar [2002] it was proposed to use a transformation of the cutoff value
which should help the distribution of the squared robust distances RD2

i to
resemble χ2 for non-normal original data:

D0 =
χ2
p,0.975med(RD2

1, . . . , RD
2
n)

χ2
p,0.5

. (9)

For other alternatives which could lead to more accurate cutoff values, see
Filzmoser et al. [2005], Hardin and Rocke [2005], Cerioli et al. [2009], Riani
et al. [2009].
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4.2 Affine equivariance

In the last several decades much effort was devoted to the development of
affine equivariant estimators possessing a high breakdown point. The affine
equivariance is a desirable property of a multivariate estimator, which makes
the analysis independent of translations and rotations of the data. We say
that a location estimator T of an n× p data set X is affine equivariant if

T (XA+ 1nb
t) = T (X)A+ b (10)

for all p-dimensional vectors b and all nonsingular p × p matrices A. The
vector 1n is a column vector with all n components equal to 1. A scatter esti-
mator C being a positive-definite symmetric p×p matrix is affine equivariant
if

C(XA+ 1nb
t) = AtC(X)A (11)

holds, again for all p-dimensional vectors b and all nonsingular p × p ma-
trices A. If an estimator is affine equivariant it transforms properly when
the data are translated, rotated or the scale changes and thus the analysis is
independent of the measurement scales of the variables or their translations
or rotations. When plugging in affine equivariant robust location and scatter
estimators into multivariate statistical methods, like discriminant analysis,
these methods also inherit this property. For some methods, like principal
component analysis (PCA) a weaker form of equivariance, namely orthogonal
equivariance is sufficient. Orthogonal equivariance means that the estimator
transforms properly under orthogonal transformations (but not affine trans-
formations) of the data.

4.3 Statistical efficiency and computational feasibility

A very important performance criterion of any statistical procedure is its
statistical efficiency, i.e. the precision of the estimate, and robust estimators
are known in general as not very efficient. One way to increase the statistical
efficiency of a high breakdown point estimator is to sacrifice the maximal
breakdown point of 50% and work with lower, say 25% which in most of the
cases is quite reasonable.

All the desirable features of a robust estimator listed above are useless if
the estimator cannot be computed in a reasonable amount of time, also in
high dimensions and with large amounts of data. Therefore the computational
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feasibility is one of the most important features for the practical application
of any estimator or procedure.

An early approach for multivariate location and scatter estimation was
that of M-estimation introduced by Maronna [1976] which provides robust,
affine equivariant and easy to compute estimates, but unfortunately these
estimates have an unacceptably low breakdown point of 1/p. Only later, this
concept has been refined to the concept of MM estimators of Yohai [1987],
which achieve high breakdown point and tunable efficiency.

Currently one of the most widely used estimators are the Minimum Co-
variance Determinant (MCD), S-estimators and the Stahel-Donoho estimator
(see later in this section). These estimators can be configured in such a way as
to achieve the theoretically maximal possible breakdown point of 50% which
gives them the ability to detect outliers even if their number is as much as
almost half of the sample size. If we give up the requirement for affine equiv-
ariance, estimators like the orthogonalized Gnanadesikan-Kettenring (OGK)
estimator are available and the reward is an extreme gain in speed. For
definitions, algorithms and references to the original papers it is suitable to
use Maronna et al. [2006]. Most of these methods are implemented in the R
statistical environment [R Development Core Team, 2009] and are available
in the object-oriented framework for robust multivariate analysis [Todorov
and Filzmoser, 2009].

4.4 Minimum covariance determinant (MCD) and min-
imum volume ellipsoid (MVE) estimators

The MCD estimator for a data set {x1, . . . ,xn} in <p is defined by that subset
{xi1 , . . . ,xih} of h observations whose covariance matrix has the smallest
determinant among all possible subsets of size h. The MCD location and
scatter estimate TMCD and CMCD are then given as the arithmetic mean and
a multiple of the sample covariance matrix of that subset

TMCD =
1

h

h∑
j=1

xij

CMCD = cccfcsscf
1

h− 1

h∑
j=1

(xij −TMCD)(xij −TMCD)t. (12)
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The multiplication factors cccf (consistency correction factor) and csscf (small
sample correction factor) are selected so that C is consistent at the multi-
variate normal model and unbiased at small samples [see Butler et al., 1993,
Croux and Haesbroeck, 1999, Pison et al., 2002, Todorov, 2008]. Note, how-
ever, that only for a very small amount of trimming (h close to n), the pro-
posed constant cccf allows to get a consistent estimator for the determinant
and, therefore, for the whole covariance matrix. Otherwise, the use of this
constant will produce overestimation. Since usually the amount of contami-
nation in the data is unknown, a value like h = [0.75 n] is used in practice,
resulting in an estimator with good statistical properties of the shape matrix,
but not of the covariance matrix.

The breakdown point of the estimator is controlled by the parameter
h. To achieve the maximal possible BP of the MCD, the choice for h is
b(n+p+1)/2c, but any integer h within the interval [(n+p+1)/2, n] can be
chosen, see Rousseeuw and Leroy [1987]. Here bzc denotes the integer part
of z which is not less than z. If h = n then the MCD location and scatter
estimate TMCD and CMCD reduce to the sample mean and covariance matrix
of the full data set.

The MCD estimator is not very efficient at normal models, especially
if h is selected so that maximal BP is achieved. To overcome the low ef-
ficiency of the MCD estimator, a reweighed version can be used. For this
purpose a weight wi is assigned to each observation xi, defined as wi = 1 if
(xi −TMCD)tC−1MCD(xi −TMCD) ≤ χ2

p,0.975 and wi = 0 otherwise, relative to
the raw MCD estimates (TMCD ,CMCD). Then the reweighted estimates are
computed as

TR =
1

ν

n∑
i=1

wixi,

CR = cr.ccfcr.sscf
1

ν − 1

n∑
i=1

wi(xi −TR)(xi −TR)t, (13)

where ν is the sum of the weights, ν =
∑n

i=1wi. Again, the multiplica-
tion factors cr.ccf and cr.sscf are selected so that CR is consistent at the
multivariate normal model and unbiased at small samples [see Pison et al.,
2002, Todorov, 2008, and the references therein]. The reweighted estimates
(TR,CR) have the same breakdown point as the initial (raw) MCD estimates
but better statistical efficiency. The reweighted estimator should not be used
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when contaminating observations are close to the boundary of the regular
observations, because the outliers could then get masked.

The MCD estimator is popular also because of a fast algorithm for its
computation [Rousseeuw and Van Driessen, 1999].

Figure 6 shows the influence of outliers onto classical estimates for location
and scale as well as the result of the MCD estimate. Displayed are the
same 110 data points from multivariate normal distribution. This figure
(Figure 6) displays the corresponding 0.975% tolerance ellipse for the classical
and robust estimates. Again it is clearly visible that the robust method can
cope with outliers, whereas the classical estimates are highly affected by
them.
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Figure 6: 97.5% tolerance ellipse for classical and MCD estimate for loca-
tion and covariance applied to simulated data from 2-dimensional normal
distribution with added contaminated data points.

The minimum volume ellipsoid (MVE ) estimator introduced by Rousseeuw
[1985] together with the MCD estimator searches for the ellipsoid of minimal
volume containing at least half of the points in the data set X. Then the
location estimate is defined as the center of this ellipsoid and the covariance
estimate is provided by its shape. Formally the estimate is defined as those
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TMVE ,CMVE that minimize det(C) subject to

#{i : (xi −T)tC−1(xi −T) ≤ c2} ≥
⌊
n+ p+ 1

2

⌋
, (14)

where # denotes the cardinality. The constant c is chosen as χ2
p,0.5.

The search for the approximate solution is made over ellipsoids deter-
mined by the covariance matrix of p+ 1 of the data points and by applying a
simple but effective improvement of the sub-sampling procedure as described
in Maronna et al. [2006], p. 198. Although there exists no formal proof of
this improvement (as for MCD and LTS), simulations show that it can be
recommended as an approximation of the MVE.

As with the MCD estimate, the MVE estimate is in general not very
efficient.

Figure 7 displays the 0.975% tolerance ellipsoid of the MVE estimate and
the classical estimate applied on the same data as in Figure 6.
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Figure 7: 97.5% tolerance ellipse for classical and MVE estimate for loca-
tion and covariance applied to simulated data from 2-dimensional normal
distribution with added contaminated data points.
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4.5 The Stahel-Donoho estimator

The first affine equivariant estimator of location and scatter with high break-
down point was proposed by Stahel [1981b,a] and Donoho [1982] but became
better known after the analysis of Maronna and Yohai [1995]. For a data
set X = {x1, . . . ,xn} in <p it is defined as a weighted mean and covariance
matrix of the form given by Equation (13) where the weight wi of each ob-
servation is inverse proportional to the “outlyingness” of the observation. Let
the univariate outlyingness of a point xi with respect to the data set X along
a vector a ∈ <p, ||a|| 6= 0, be given by

r(xi, a) =
|xta−m(atX)|

s(atX)
i = 1, . . . , n, (15)

where (atX) is the projection of the data set X on a and the functions m()
and s() are robust univariate location and scale statistics, for example the
median and MAD, respectively. When applying this idea to all possible uni-
variate projections, one obtains in a natural way a measure for multivariate
outlyingness of xi, which is defined by

ri = r(xi) = max
a

r(xi, a). (16)

The weights are computed by wi = w(ri) where w(r) is a non-increasing
function of r, and w(r) and w(r)r2 are bounded. Maronna and Yohai [1995]
use the weights

w(r) = min

(
1,
(c
t

)2)
(17)

with c =
√
χ2
p,β and β = 0.95, that are known in the literature as “Huber

weights”.
Exact computation of the estimator is not possible and an approximate

solution is found by subsampling a large number of directions a and comput-
ing the outlyingness measures ri, i = 1, . . . , n, for them. For each subsample
of p points the vector a is taken as the norm 1 vector orthogonal to the
hyperplane spanned by these points.

4.6 Orthogonalized Gnanadesikan/Kettenring

The MCD estimator and all other known affine equivariant high-breakdown
point estimates are solutions to a highly non-convex optimization problem

32



−2 0 2 4

−
3

−
2

−
1

0
1

2
3

4
109

102

108

107
101

103
110

105

106

104

Stahel−Donoho

classical

Figure 8: 97.5% tolerance ellipse for classical and Stahel-Donoho estimate
for location and scale applied to simulated data from 2-dimensional normal
distribution with added contaminated data points.

and as such pose a serious computational challenge. Much faster estimates
with high breakdown point can be computed if one gives up the require-
ments of affine equivariance of the covariance matrix. Such an algorithm was
proposed by Maronna and Zamar [2002] which is based on the simple robust
bivariate covariance estimator sjk proposed by Gnanadesikan and Kettenring
[1972] and studied by Devlin et al. [1981]. For a pair of random variables Yj
and Yk and a standard deviation function σ(), sjk is defined as

sjk =
1

4

(
σ

(
Yj

σ(Yj)
+

Yk
σ(Yk)

)2

− σ
(

Yj
σ(Yj)

− Yk
σ(Yk)

)2
)
. (18)

If a robust function is chosen for σ() then sjk is also robust and an estimate of
the covariance matrix can be obtained by computing each of its elements sjk
for each j = 1, . . . , p and k = 1, . . . , p using Equation (18). This estimator
does not necessarily produce a positive definite matrix (although symmetric)
and it is not affine equivariant. Maronna and Zamar [2002] overcome the
lack of positive definiteness by the following steps:
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1. Define yi = D−1xi, i = 1, . . . , n, with D = diag(σ(X1), . . . , σ(Xp)),
where Xl, l = 1, . . . , p, are the columns of the data matrix X =
{x1, . . . ,xn}. Thus a normalized data matrix Y = {y1, . . . ,yn} is
computed.

2. Compute the matrix U = (ujk) as ujk = sjk = s(Yj, Yk) if j 6= k or
ujk = 1 otherwise. Here Yl, l = 1, . . . , p, are the columns of the trans-
formed data matrix Y and s(., .) is a robust estimate of the covariance
of two random variables like the one in Equation (18).

3. Obtain the “principal component decomposition” of Y by decomposing
U = EΛEt where Λ is a diagonal matrix Λ = diag(λ1, . . . , λp) with
the eigenvalues λj of U and E is a matrix with columns the eigenvalues
ej of U .

4. Define zi = Etyi = EtD−1xi and A = DE. Then the estima-
tor of Σ is COGK = AΓAt where Γ = diag(σ(Zj)

2), j = 1, . . . , p,
and the location estimator is TOGK = Am where m = m(zi) =
(m(Z1), . . . ,m(Zp)) is a robust mean function.

This can be iterated by computing COGK and TOGK for Z = {z1, . . . ,zn}
obtained in the last step of the procedure and then transforming back to the
original coordinate system. Simulations [Maronna and Zamar, 2002] show
that iterations beyond the second did not lead to an improvement.

Similar as for the MCD estimator, a one-step reweighting can be per-
formed using Equations (13), but the weights wi are based on the 0.9 quantile
of the χ2

p distribution (instead of 0.975) and the correction factors cr.ccf and
cr.sscf are not used.

In order to complete the algorithm we need a robust and efficient location
function m() and scale function σ(), and one proposal is given in Maronna
and Zamar [2002]. Further, the robust estimate of covariance between two
random vectors s() given by Equation (18) can be replaced by another one.
This OGK algorithm preserves the positive definiteness of the covariance ma-
trix and is ”almost affine equivariant”. Even faster versions of this algorithm
were proposed by Alqallaf et al. [2002].

4.7 S estimates and MM estimates

S estimators of µ and Σ were introduced by Davies [1987] and further studied
by Lopuhaä [1989] [see also Rousseeuw and Leroy, 1987, p. 263]. For a data
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set of p-variate observations {x1, . . . ,xn} an S estimate (T,C) is defined
as the solution of σ(d1, . . . , dn) = min where di = (x − T)tC−1(x − T)
and det(C) = 1. Here σ = σ(z) is the M-scale estimate of a data set z =
{z1, . . . , zn} defined as the solution of 1

n
Σρ(z/σ) = δ where ρ is nondecreasing,

ρ(0) = 0 and ρ(∞) = 1 and δ ∈ (0, 1). An equivalent definition is to find the
vector T and a positive definite symmetric matrix C that minimizes det(C)
subject to

1

n

n∑
i=1

ρ(di) = b0 (19)

where di and ρ are defined as above and the constant b0 is chosen for consis-
tency of the estimator.

As shown by Lopuhaä [1989], S estimators have a close connection to
the M estimators and the solution (T,C) is also a solution to an equation
defining an M estimator as well as a weighted sample mean and covariance
matrix:

dji = [(xi −T(j−1))t(C(j−1))−1(x−T(j−1))]1/2

T(j) =
Σw(d

(j)
i )xi

Σw(d
(j)
i )

C(j) =
Σw(d

(j)
i )(xi −T(j))(xi −T(j))t

Σw(d
(j)
i )

(20)

There are several algorithms for computing the S estimates: (i) SURREAL
proposed by Ruppert [1992] as an analog to the algorithm proposed by the
same author for computing S estimators of regression; (ii)Bisquare S estima-
tion with HBDP start : as described in Maronna et al. [2006]; (iii) Rocke type
S estimates [Rocke, 1996] and (iv) Fast S estimates proposed by Salibian-
Barrera and Yohai [2006]. For more details about the computation of these
estimates, see Todorov and Filzmoser [2009]. Rocke [1996] warns that when
using S estimators in high dimension, they can fail to reject as outliers points
that have large distances from the main mass of points, although attaining
a breakdown point approaching 50%,

Tatsuoka and Tyler [2000] introduced the multivariate MM estimators
together with the broader class of estimators which they call “multivariate
M-estimators with auxiliary scale”. They estimate the scale by means of a
very robust S estimator, and then estimate the location and covariance using
a different ρ-function with better efficiency at the normal model. The location
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and covariance estimates inherit the breakdown point of the auxiliary scale
and can be seen as a generalization of the regression MM estimators of Yohai
[1987].

Figure 9 displays the 97.5% tolerance ellipsoid of the OGK-estimate and
classical estimate applied on 110 data points simulated from multivariate
normal distribution as in Figure 6.
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Figure 9: 97.5% tolerance ellipse for classical and OGK estimate for location
and scale applied to simulated data from 2-dimensional normal distribution
with added contaminated data points.

4.8 The PCOut Algorithm

The PCOut algorithm proposed by Filzmoser et al. [2008] combines two
complementary measures of outlyingness in two subsequent steps. In the
first step the target are the location outliers (mean-shift outliers, described
by a different location vector) and in the second step the aim is to detect
scatter outliers (variance inflation/deflation outliers, which possess a different
scatter matrix than the rest of the data). The algorithm thus provides a final
score that allows the ranking of the observations according to their deviation
from the bulk of the data. A brief sketch of the algorithm will be presented
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in the following sections, all details and many examples are available in the
original paper.

4.8.1 Preprocessing

The algorithm starts by several preprocessing steps, the first of which is
robust rescaling each component by the coordinate-wise median and MAD,

x∗ij =
xij −med(x1j, . . . , xnj)

MAD(x1j, . . . , xnj)
, j = 1, . . . , p. (21)

In order to be able to perform this rescaling it is necessary either to omit the
dimensions with MAD equal to zero or to use another measure. From this
rescaled data the covariance matrix is calculated and eigen-decomposition is
performed which results in a semi robust PCA. Only those p∗ components
which amount to at least 99% of the total variance are retained. Skipping
out the components which contribute only useless noise, a representation in
a lower dimensional p∗ space, p∗ < p is obtained. This step solves also the
problem with p� n since we can select p∗ < n. This decomposition can be
represented by

Z = X∗V (22)

where V is the matrix of eigenvectors and X∗ is the matrix with components
x∗ij.

These principal components are rescaled by the median and the MAD simi-
larly as above,

z∗ij =
zij −med(z1j, . . . , znj)

MAD(z1j, . . . , znj)
, j = 1, . . . , p∗. (23)

The resulting matrix Z∗ = (z∗ij) is the input for the next two steps of the
algorithm.

4.8.2 Detection of location outliers

The detection of location outliers, data points generated from a distribution
with shifted mean but same covariance as the main data distribution, starts
by calculation of component-wise robust kurtosis measure according to:

wj =

∣∣∣∣∣ 1n
n∑
i=1

(z∗ij −med(z∗1j, . . . , z
∗
nj))

4

MAD(z∗1j, . . . , z
∗
nj)

4
− 3

∣∣∣∣∣ , j = 1, . . . , p∗, (24)
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where z∗ij are the rescaled principal components from Equation (23). Equa-
tion (24) assigns higher weights to the components where outliers clearly
stand out. If no outliers are present in a given component then the prin-
cipal component is expected to be approximately normally distributed and
the kurtosis will be close to zero. Therefore each dimension q = 1, . . . , p∗ is
weighted proportionally to the absolute value of the kurtosis given by Equa-
tion (24). Since the components are uncorrelated it is possible to calculate
a robust Mahalanobis distance utilizing the distance from the median (as
scaled by MAD),

RDi =

√√√√ p∗∑
j=1

(z∗ijw
∗
j )

2, (25)

which then are translated to

di = RDi

√
χ2
p∗,0.5

med(RD1, . . . , RDn)
for i = 1, . . . , n (26)

in order to bring the empirical distances {di} closer to χ2
p∗ . These distances

are used in the translated biweight function [Rocke, 1996] to assign weights to
each observation. These weights are used as a measure of outlyingness. Filz-
moser et al. [2008] claim that the translated biweight function (shown below)
has certain advantages over other weighting schemes they have experimented
with. The weights for the observations are calculated as follows,

wi =


0, di ≥ c(

1−
(
di−M
c−M

)2)2
, M < di < c,

1, di ≤M,

(27)

where i = 1, . . . , n and c is given by

c = med(d1, . . . , dn) + 2.5.MAD(d1, . . . , dn). (28)

M is found by sorting the distances {d1, . . . , dn} in ascending order and taking
M equal to the distance at position bn/3c. These weights w1i, i = 1, . . . , n,
are kept to combine with the result from step two to obtain the final weights.
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4.8.3 Detection of scatter outliers

The scatter outliers, outliers generated by a distribution with an inflated co-
variance matrix, are searched for in the space defined by Z∗ in Equation (23)
by calculating the Euclidean norm for data in principal component space
(which is equivalent to the Mahalanobis distance in the original data space
but is much faster to compute). The weights w2i, i = 1, . . . , n, of the sec-
ond step are calculated using again the translated biweight function from
Equation (27) and setting M2 = χ2

p∗,0.25 and c = χ2
p∗,0.99.

4.8.4 Computation of final weights

The weights resulting from the two phases of the algorithm are combined
into final weights according to

wi =
(w1i + s)(w2i + s)

(1 + s)2
, i = 1, . . . , n, (29)

where typically s = 0.25. Outliers are then identified as points having weights
wi < 0.25.

4.9 Epidemic algorithm

Proposed by Béguin and Hulliger [2004], this method does not assume a
certain model distribution of the data. The algorithm simulates an epidemic
which starts at a multivariate robust center (sample spatial median) and
propagates through the point cloud. The infection time is used to judge on
the outlyingness of the points. The latest infected points or those not infected
at all are considered outliers. The adaption of the algorithm to missing values
is straightforward by leaving out missing values from the calculations of the
univariate statistics (medians and median absolute deviations) as well as
from the distance calculations. If too many items are missing in a pair of
observations the corresponding distance is set to infinity (in the practical
implementation a simplified criterion is applied excluding observations with
less than p/2 observed items from the epidemic). The difficulty in using
this algorithms is the crucial importance of the choice of the transmission
function, which determines the probability that a point is infected given
another point and the distance between them, the reach of the infection and
the selection of the deterministic mode of infection. In other words, the
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algorithm is based on many parameters and in practice it is difficult to find
optimal parameter values. In addition, the computation time of the epidemic
algorithm is high.

4.10 Bacon-EEM

This algorithm [Beguin and Hulliger, 2008] developed in the framework of
the EUREDIT project is based on the algorithm proposed by [Billor et al.,
2000], which in turn is an improvement over an earlier “forward search”based
algorithm by one of the authors. It is supposed to be a balance between affine
equivariance and robustness. The algorithm starts from a data set that is
supposed to be outlier free and moves forward by inspecting the rest of the
observations. Good points (non-outlying observations) are added as long
as possible. The adaptation for incomplete data consists in replacing the
computation of the location and covariance at each step by an EM-algorithm
[see also Beguin and Hulliger, 2008, Todorov et al., 2011].

In the following, the BACON algorithm is described in more detail. The
BACON algorithm, proposed by Billor et al. [2000], is a step-wise algorithm
for robust estimates of location and covariance. The description of the al-
gorithm in this work is the one used by the BACON-EEM algorithm, see
Beguin and Hulliger [2008]. For a data matrix X ∈ Rn×p denote µX, ΣX

and MDX(x) as the classical estimates for location and covariance as well as
the corresponding Mahalanobis distance of an observation x.
The first step of the BACON algorithm consists of estimating an initial ”good”
subset G. There are two ways to determine such a subset. For the calcula-
tions in this work the set G is determined by the c · p points, c = 3, with
smallest Mahalanobis distance MDX(xi), i = 1, . . . , n. Starting with the
subset G, the BACON algorithm performs the following steps:

1. Compute the Mahalanobis distances, corresponding to the subset G,
MDG(xi) = (xi−µG)tΣ−1G (xi−µG), i = 1, . . . , n, for every observation
in X.

2. Determine a new subset G′, containing all the points with MDG(xi) <
cnprχ

2
p,α/n, with cnpr = cnp + chr as correction factor, where cnp = 1 +

(p + 1)/(n − p) + 1/(n − h − p), chr = max {0, (h− r)/(h+ r)} , h =
d(n+ p+ 1)/2e and r = |G|.

3. If G′ = G stop, otherwise set G to G′ and go to (1).
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Observations which are not contained in the final set G are declared outliers.

EEM algorithm: The EEM algorithm is an extension to the Expecta-
tion/Maximization algorithm, which can be used to estimate location and
covariance in a data set with incomplete observation. The EM algorithm
contains an E-step and a M-step which are iterated sequentially until con-
vergence.
Let given data X ∈ Rn×p be made up of observed and missing values X =
Xo∪Xm. Furthermore the missingness mechanism is ignorable and the miss-
ingness is independent from the sample. Assuming that the observations
where generated by multivariate normal distribution with density f(x, θ),
the complete log-likelihood can be written as

l(θ|X) = ν(θ)t ·T(X) +Ng(θ) + c,

with ν = (ν1, . . . , νk) as the canonical form of the parameter θ and T(X) =
(T1(X), . . . ,Tk(X)) as the vector of complete-data sufficient statistics. Since
the data was generated by a multivariate normal distribution the sufficient
statistics are composed of the sums

∑n
i=1 xki and sums of products

∑n
i=1 xki x

l
i, 1 ≤

k, l ≤ p. In the E-step the conditional expectations of these sums are calcu-
lated, given the preliminary parameter θ(t) and the observed data Xo.
For these conditional expectations it can be shown that

E

(
n∑
i=1

xki |Xo, θ
(t)

)
=

n∑
i=1

E
(
xki |xobsi , θ(t)

)
, 1 ≤ k ≤ p,

and

E

(
n∑
i=1

xki x
l
i|Xo, θ

(t)

)
=

n∑
i=1

E
(
xki x

l
i|xobsi , θ(t)

)
, 1 ≤ k, l ≤ p.

To estimate these conditional expectations a Horvitz-Thompson estimator is
used. The resulting estimates are given by

T k0 =
∑
s

wiE(xki |xobsi , θ(t)) , 1 ≤ k ≤ p,

and

T kl =
∑
s

wiE(xki x
l
i|xobsi , θ(t)) , 1 ≤ k, l ≤ p.
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By using an estimate for the conditional expectations the E-step is called the
estimated expectation step (EE-step), see Beguin and Hulliger [2008].

Using these estimates for the complete log-likelihood function yields a so
called average population likelihood, which is then maximized with regard to
θ (M-step). The solution, θ(t+1), is given by

θ(t+1) = SWP [0]

(
(T kl)0≤k,l≤p∑

swi

)
,

where (T kl)0≤k,l≤p is the symmetric (p+1)×(p+1) matrix from the EE-step,
with T 00 set to 1 and SWP [0] is the sweep operator on the first line/column
of the matrix.

Combining the BACON algorithm with the EEM-algorithm yields a ro-
bust estimate for location and covariance which can handle missing values in
the given data. The steps of the BACON-EEM algorithm are as follows:

1. Calculate a starting set G by using the c · p observations with mini-
mal squared marginal Mahalanobis distance, MD2

marg. The marginal
Mahalanobis distance can be used if observations (x) have an unob-
served (xm) and observed part (xo) and is defined by

MD2
marg =

p

q
(xo − µo)tΣ−1oo (xo − µo),

where µo and Σoo are part of the location vector and covariance matrix
corresponding to xo. The factor p/q, with p as the number of variables
and q =

∑
k rik as the number of non-missing variables, are meant

as scaling factor. The subset G can also be determined by using the
coordinate-wise median, but for the calculations in this work the former
method is used.

2. Compute µ̂G and Σ̂G using the EEM-algorithm.

3. Calculate the squared marginal Mahalanobis distances MD2
G(xi) for

i = 1, . . . , n and determine a new subset G′ by those observations for
which MD2

G(xi) < cN̂pr̂χ
2
p,α.

4. If G = G′ stop, otherwise set G to G′ and go to (2).

Observations which are not in the final subset G are declared outliers. For
more information on the BACON-EEM algorithm, see Beguin and Hulliger
[2008].
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5 Imputation of outliers

5.1 Adjusting potential outliers for univariate meth-
ods

After locating potential outliers, the data points will not be discarded since
this would result in a heavy loss of information. Instead, the values or weights
of the potential outliers will be adjusted. The adjustment of the outliers
depends on the rule that is used for outlier detection:

• When using methods that are based on the rule “robust location ±
constant times robust measure of scale”, potential outliers will be placed
to the upper or lower boundaries defined by Equations (2) and (3).

• In the case of the boxplot or the adjusted boxplot rule, potential outliers
will be replaced with the upper or lower fences defined by (4).

• For the Pareto tail modeling, the potential outliers will be dealt with
in two different ways (see also Alfons and Templ [2013]:

– Calibration of potential outliers: Values larger than a certain
quantile of the fitted distribution will receive a sample weight equal
to 1 and the weights of the remaining observations are adjusted
accordingly by calibration.

– Replacement of potential outliers: Values larger than a cer-
tain quantile of the fitted distribution will be replaced by values
drawn from the fitted distribution. This is shown in Figure 10.
The solid black line represents the distribution of the original val-
ues, the grey line corresponds to the Pareto fit, and the red line
symbolizes the distribution of values drawn from the Pareto dis-
tribution. The order of the original values will be preserved.

5.2 Adjusting potential outliers for multivariate meth-
ods

As mentioned in the previous section, dealing with potential outliers after
they have been detected is an important task. Discarding them would result
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Figure 10: Replacement of the whole tail by draws from a fitted Pareto
distribution.

in heavy loss of information as well as a heavy influence on further calcula-
tions on the data set. Therefore, imputing the data points would be more
appropriate. In the case of one-dimensional outlier detection one of the pre-
sented ways of dealing with outliers was to move them to the upper or lower
boundaries of the interval which ranges over the ”clean” bulk of the data set.
When it comes to multivariate outliers, this adjustment of potential outliers
to preserve meaningful observations is not as straightforward as in the one-
dimensional case. Nevertheless, multivariate outliers can be imputed in a
similar way. In this work potential outliers will be imputed by projecting
them onto the boundaries of a 97.5% tolerance ellipse. This procedure is
described in the following.

Using one of the above mentioned methods to robustly estimate location
and covariance it is possible to detect potential outliers by using robust dis-
tances. After these outliers have been identified, they will be moved towards
the 97.5% tolerance ellipse of the previously calculated location and covari-
ance estimates, in the direction of the robust center of the data set. To be
more precise, let TR and CR be the robust estimates of location and covari-
ance of the p-dimensional observations {x1, . . . ,xn}. Furthermore, let xj be
a potential outlier, i.e. d(xj,TR,CR) > χ2

p;0.975. To replace this point by a
the point on the 97.5% tolerance ellipse into the direction of the location TR
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implies that the imputed observation x̃j must be on the straight line between
xj and TR, which means x̃j ∈ {αxj + (1− α)TR, 0 ≤ α ≤ 1}. In addition to
that, the imputed point x̃j must lie on the tolerance ellipse which results in
d(x̃j,TR,CR) = χ2

p;0.975. To conclude, the imputed observation must solve
the following equalities,

(x̃j −TR)tC−1R (x̃j −TR) = χ2
p;0.975

x̃j = αxj + (1− α)TR

α ∈ [0, 1] .

To determine α, one can simply use the first two equations to obtain

((αxj + (1− α)TR)−TR)tC−1R ((αxj + (1− α)TR)−TR) = χ2
p;0.975

(α (xj −TR))tC−1R (α (xj −TR)) = χ2
p;0.975

α2 (xj −TR)tC−1R (xj −TR)︸ ︷︷ ︸
d(xj ,TR,CR)

= χ2
p;0.975 .

Finally we get that α =
√

d(xj ,TR,CR)

χ2
p;0.975

and the imputed observation x̃j =

αxj + (1− α)TR.
Figure 11 displays the imputation of outliers from data generated by mul-
tivariate normal distribution. For this data set, 100 observations have been
simulated from a multivariate normal distribution with µ = (0, 0)t and
Σ =

(
1 0.95

0.95 1

)
. In addition, 10 data points, were generated from a mul-

tivariate normal distribution with µ = (−1.5, 1.5)t and Σ =
(
1 0
0 1

)
. These 10

outliers with different mean and covariance as the data majority are replaced
using the above strategy. The blue symbols ”+” indicate the positions of the
data points after imputation.
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Figure 11: Imputation of potential outliers of data from 2-dimensional normal
distribution with added contaminated data points.
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6 Numerical study

In this section, univariate and multivariate outlier detection methods are
applied on household expenditure data from various countries. The data
contain information of the households; annual consumption expenditure, in
local currency, by product and service (the list of which is specific to each
survey). One way to analyze these household data is by estimating the Gini
coefficient over the yearly consumption. In this context, the Gini coefficient
would measure the inequality of consumption in terms of monetary value be-
tween the surveyed households. Since the data was generated through large
surveys, extreme values or measurement errors can occur which can influence
the estimation of the Gini coefficient [Alfons et al., 2013]. Therefore it will be
beneficial to detect and impute potential outliers beforehand. In the follow-
ing, the outlier detection methods discussed in the previous sections are used
to detect potential outliers in the household expenditure data. Afterwards,
potential outliers will be imputed and the Gini coefficient will be calculated.
It is not known how many extreme values or measurement errors are con-
tained in the household expenditure data. Moreover, the “correct” or “true”
value of the Gini coefficient is also not known. These circumstances make
it difficult to see which of the outlier detection methods provide the most
reliable results. To get a deeper understanding of how well these methods
perform, a sensitivity analysis as well as simulations are conducted. The re-
sults should provide evidence on which methods are most suitable for outlier
detection on large household expenditure data sets. It should also be noted
that the outlier detection schemes presented in this work do not account
for country specific information or characteristics, because the attempt is to
present an outlier detection scheme which performs well on household expen-
diture data regardless of the origin of the data. The methods should also be
applicable on household data from various countries, therefore it would be
an unfavorable approach to the problem if country specific details were taken
into account.

The calculations in the work have all been done using the programming
language R and a variety of existing R-packages.

Before the calculations of the outlier detection methods can be presented,
it is necessary to understand how the household expenditure data was ex-
tracted, what kind of information is presented in it, and how the data is
structured.
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6.1 Provided data and data structure

The household expenditure data used here comprises household surveys from
five countries, namely Albania, Mexico, India, Malawi and Tajikistan con-
ducted in the year 2008, 2010, 2009, 2010 and 2007, respectively. These
data sets were provided by the World Bank. These data sets were originally
taken from the national data producers and are the result of large household
surveys. The surveys include sociodemographic characteristics of each house-
hold as well as information on the household structure, including household
size, education and age structure of the household members. Furthermore,
the participants were asked to state how much the household consumes in lo-
cal currency over a given time horizon in various spending categories. These
categories range from different kinds of food-products over general living ex-
penditures like gas, electricity or water to expenses on education, health and
others. The number and type of categories of products and services differ for
each survey but have in common that the combined categories reflect most
of the consumption of a household for a given time horizon.

Ideally, we would like to detect outliers at product/service level, not in
values for aggregated categories of products and services. However, since
many zero observations are present in the single variables, outlier detection
may become unreliable or even infeasible. This is an issue in particular for
the discussed multivariate methods, which require at least twice as many
observations without zeros as variables (for good stability even much more).
But also for univariate estimation it is recommended to work with a repre-
sentative amount of non-zero data.

6.1.1 Harmonization of the data

Since the surveys and resulting data sets differ in methodology and terminol-
ogy, the World Bank started to harmonize the resulting data into a common
framework with common data dictionary. For this harmonization process a
series of steps were carried out on each data set. This starts with the extrac-
tion of household characteristics and the calculation of annual consumption
for all goods and services. Regarding the annualizing of consumption values
this process is in many cases not trivial since multiplying the consumption
of a household for a specific food or service by a factor would often not make
sense. For instance, in the case of durable goods the annual consumption was
calculated with the use of depreciation rates, if the necessary information was
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present in the survey. In some categories this annualization was not always
possible, like in case of expenditures for health over a time horizon of a week
or month.

Another part of the harmonization process which led to difficulties was
the mapping of the household expenditures of each survey onto a standard-
ized framework for goods and services, namely the basic headings used by the
International Comparison Program (ICP) 2005. This heading consists of 107
different categories. Since the local surveys did not always use this catego-
rization it was not easy to map the given data sets onto these basic headings.
In some cases there was a perfect match in the survey questionnaire to one
of the basic headings; in other cases an item in the survey questionnaire cor-
responded to many basic headings and vice versa. None of the household
surveys covered all ICP basic headings.

As a last step of the harmonization, a series of quality control tables were
calculated to validate the harmonized data sets. Apart from the ICP basic
headings the harmonization also provided some grouping which condensed
the ICP basic headings. This results in the ICP class, the ICP group and
ICP category code for which every code represents a rougher grouping of the
former. This means that the ICP category code is a regrouping of the ICP
group code and the ICP group code a regrouping of the ICP class code which
is a regrouping of the ICP basic headings.

Since there are considerable differences between the original surveys the
harmonized data sets are not fully comparable. For a more detailed descrip-
tion of this harmonization process, see Dupriez [2007].

6.1.2 Categories and missing values

The data sets for each country provided by the World Bank are divided into
three files. One file corresponds to the household characteristics of the ques-
tionnaired households. Next to household ID’s and household weights, the
household data set includes 50 variables such as geographical region, house-
hold size, civil status, highest education of the household head, having a car,
etc. The second data set includes individual information of the residences of
each household, like sex, age, the relation in the household (e.g. grandchild),
martial status and the household ID that is needed to merge this data set
with the other data sets. The third data set corresponds to the consump-
tion of each household. Some variables are (unnecessarily) repeated (such as
geographical information). The most important variables are the ICP cate-
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gories [see The World Bank Group, 2015, page 229, and further discussion
below] and total consumption (for each ICP class). The data sets also contain
household and population weights. The calculations in this work will mainly
focus on the household expenditures and household characteristics. For the
latter, the information used is limited to geographical characteristics, house-
hold size and household weights. The consumption data of each household
contain for each household the annual value of goods or services consumed in
local currency. The total consumption for a specific good or service in local
currency is furthermore divided into three subgroups. These groups consist
of the value of good or service purchased in local currency, the estimated
value of good or services which are home-produced and the value of goods
or services which are received as a gift. Furthermore, the annual spendings
of a household for a specific good or service are only listed if the total con-
sumption of this good or service in local currency is greater than zero. This
means that for goods or services for which there is no information of the total
consumption for a specific household, it could be that the household has no
annual spendings for this good or service, or that the information is missing.
In both cases the corresponding value needs to be considered as zero.

In the context of not existing data entries it is important to note that the
original surveys did not always use the ICP basic headings and that the ICP
basic headings have such a variety that one can not expect that households
have expenditures in each of these categories. Therefore, for many house-
holds their expenditures are only listed in some of the ICP basic headings
leading to a lot of missing values or real zeros. This kind of incompleteness
of the data set can result in some problems depending on the type of analysis
that has do be done. To overcome these problems it is possible to use not the
ICP basic headings but for example the ICP category code. This category
code groups the different expenditures of each household into 13 different
categories. Using these 13 different categories instead of the ICP basic head-
ings results in a loss of information since fewer categories are present, but
it also reduces the amount of missing values. Because of this, analyzing the
expenditure data based on these 13 categories will be the preferred approach
here. Other approaches are of course also possible, depending on the task of
the analysis.

Even when only analyzing the 13 main expenditure categories, the amount
of zero entries can be quite high for some categories. For the data sets from
the five different countries mentioned above, the amount of zero entries for
some categories is more than 50% of the corresponding sample size; in some
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household ID︷︸︸︷ household weights︷︸︸︷ geographic characteristics︷ ︸︸ ︷ expenditure categories︷ ︸︸ ︷ 1 50 locationA . . . 13 . . . 785
...

...
...

...
...

...
...

n 4 locationZ . . . 25 . . . 353


Table 2: Schematic structure of the data set after restructuring.

cases even more than 80% or 90%. For some of the outlier detection meth-
ods, these amounts are too large and the methods are not able to produce
any result. To overcome such problems, an R routine was implemented to
combine certain categories, and therefore reduce the number of zero entries.
The main objective of this routine lies in the comparison of the interquartile
range (IQR) for the expenditures of each category. If the IQRs of two or
more categories overlap ’considerably’ then those categories are combined.
This regrouping scheme does not take into account a regrouping which re-
sults in a minimal fraction of zeros. Furthermore, this regrouping scheme
represents solely a suggestion and is not proven to work in every case.

6.1.3 Data format

As mentioned before, household characteristics as well as consumption data
are used for the calculations. Since the provided data sets are not in a favor-
able format to perform calculations, the data are extracted and restructured
to a matrix format prior to the calculations. In this format the columns con-
tain the household ID, household characteristics, the consumption categories
and the sample weights, and the rows represent each survey participant. Ta-
ble 2 shows the structure of the data set after restructuring the original data
into the matrix format. If a household does not have expenditure informa-
tion in a specific category or specific good or service, the corresponding entry
in the restructured matrix format is zero. Furthermore, the expenditure
categories display the annual consumption in local currency, and therefore,
depending on the country the values can be reported in millions or higher
and are transcended for the calculations by a factor 1000.
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6.1.4 Selected data and further data preparation

In the following univariate and multivariate outlier detection methods are
applied on the household surveys of Albania, Mexico, India, Malawi and
Tajikistan. First and foremost, the results for the outlier detection methods
are demonstrated on the Albanian household survey. One reason for this is
that the Albanian household survey has a relatively small sample size with
3600 household, including 14785 individuals, allowing for quick computations.
For the other surveys, the corresponding results are listed in a table later
on. In the case of univariate outlier detection, the corresponding household
sample weights are always considered for any calculations.

Before applying the outlier detection algorithms, the data set is trans-
formed into the matrix format as discussed previously. Table 3 shows the
number of zero entries for each category in the original data set. The amount
of zeros for the Albanian household survey is similar for the other four sur-
veys. Note that the high number of zeros in the category “Education” is due
to the fact that public schools and universities are free of charge.

Category Zero entries

Food and non-alcoholic beverages 2
Alcoholic beverages, tobacco and narcotic 1476
Clothing and footwear 347
Housing, water, electricity, gas and other fuels 25
Furnishings, household equipment, household maintenance 2
Health 1264
Transport 1468
Communication 407
Recreation and culture 19
Education 3278
Restaurants and hotels 1814
Miscellaneous goods and services 114

Table 3: Number of zero entries per category for the Albanian household
survey data

Zeros will be treated in different ways whether univariate or multivariate
outlier detection methods are applied. Univariate outlier detection methods
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will either be applied on each of the expenditure categories separately or on
the aggregated expenditures for every household.

When applying univariate outlier detection methods on each of the cat-
egories separately, zero values of each category will be discarded for outlier
detection. Note that excluding these households from the calculations also
influences the corresponding household weights. If some of the households
are discarded, the household weights given in the data set do no longer add
up to the whole population size. This might influence further calculations
including the household sample weights. Whether the sample weights add
up to the population size or not does not influence the presented outlier de-
tection methods. Therefore, household sample weights will not be adjusted
for outlier detection.

6.2 Univariate methods

The following univariate outlier detection methods are tested on the data
set: rules defined by the boxplot and the adjusted boxplot [Vandervieren
and Hubert, 2008], methods based on robust location ± constant × scale in
conjunction with the Box-Cox transformation [Box and Cox, 1964, Maronna
et al., 2006], and Pareto tail modeling [Alfons et al., 2013]. As mentioned in
Section 3, the constant for the use of IQR or MAD for outlier detection is
chosen as c = 3. In case of underlying normal distribution, this choice would
lead to a very similar behavior as the boxplot rule.
Figure 12 shows the total annual consumption of each household in the Alba-
nian household survey on the x-axis. The corresponding household weights
are placed on the y-axis. Figure 12 also displays the weighted median and
the Pareto threshold beyond which the Pareto distribution is fit to the data.
Note that the household weights are, except for some few data points, com-
parably large and calculations for the weighted quantiles will therefore be
quite robust. The other vertical lines represent the upper and lower bounds
for the outlier detection schemes using weighted IQR and weighted MAD.
Besides the conventional use of weighted IQR and MAD for univariate out-
lier detection these methods have also been used in combination with the
Box-Cox transformation and the robustification of the Box-Cox transforma-
tion. In these cases, the corresponding outlier detection schemes have been
conducted after data transformation, the calculated bounds for potential out-
liers were transformed back and the potential outliers were identified. The
boxplot and the adjusted boxplot are displayed below the x-axis.
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Figure 12: Univariate outlier detection methods applied to the total annual
consumption data of the Albanian household survey.

For a better understanding of the calculated bounds, Table 4 shows the
upper and lower bounds beyond which potential outliers are detected for
the above mentioned univariate outlier detection schemes. In the context
of Pareto tail modeling, the displayed value represents the Pareto threshold
which is the point beyond which the Pareto distribution is fitted.

Figure 12 shows that the expenditure data is skewed to the right. There-
fore, outlier detection schemes that are not adapted for skewness in the data
will most likely show poor performance or can be expected to be not suit-
able for the problem. These methods are the boxplot and the calculations
using IQR or MAD without the use of the Box-Cox transformation. Also
Table 4 indicates that these methods are not suitable for the problem since
their lower bounds are negative, which is in this context an invalid result.
Not only the lower bounds are negative but also a large chunk of the data
points with higher values are declared as potential outliers. The calculations
using IQR or MAD in connection with the Box-Cox transformation seem to
produce more reasonable results. This is purely based on the notion that
these methods can deal with the skewness of the data and the calculated
boundaries are all positive and do not seem to be so strict, in the case of the
upper boundary. The same holds for the adjusted boxplot.
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upper bound lower bound

IQR 1585.5592 -392.1509
Box-Cox with IQR 3619.7083 143.3289
robust Box-Cox with IQR 2758.3991 113.6876
MAD 1502.0627 -308.6544
Box-Cox with MAD 3557.0694 144.9035
robust Box-Cox with MAD 2663.8560 118.4252
Boxplot 1365.37964 -68.46019
adjusted Boxplot 2342.039 235.527
Pareto Modeling 1937.27 —

Table 4: Upper and lower bounds for univariate outlier detection schemes
applied to the total annual consumption data of the Albanian household
survey.

One reason to apply outlier detection for this kind of data is to measure
inequality in the consumption distribution, e.g., by estimating the Gini coeffi-
cient. A classical calculation of the Gini coefficient would be highly influenced
by outliers and produce arbitrary results. Therefore, locating and adjusting
potential outliers would produce more reliable results for the Gini coefficient.
On the other hand, the above presented univariate outlier detection schemes
lead to quite different results for the identified number of outliers. Since the
number and position of the true outliers in the data set is not available, it is
not straightforward to determine which of the methods delivers the most re-
liable results. In addition, adjusting the potential outliers results in different
’corrected’ data sets for each scheme which will then result in different values
for the Gini coefficient. Also in case of the Gini coefficient, the true value,
or a value which is expected to be true, is unknown. Nevertheless, it will be
interesting to see and investigate the effect of the outlier detection methods
and adjustments on the resulting Gini coefficients.

Figure 13 shows on the top left side the estimated values for the Gini co-
efficient after the outlier detection schemes have been applied and potential
outliers have been adjusted. In the case of Pareto modeling, the detected out-
liers have in one case been replaced by values drawn from the fitted Pareto
distribution (denoted by Pareto.rn), and in the other case the correspond-
ing weights for the potential outliers have been set to 1 and the weights
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coefficient (right) of Albanian data set after outlier detection and adjustment
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applied on Albanian data set.
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for the other observations have been re-calibrated accordingly (denoted by
Pareto.cn). The blue horizontal lines indicate the 95% confidence interval
for the estimated Gini coefficients. On the top right side of Figure 13, the
variances of the estimated Gini coefficients are displayed for every univariate
outlier detection scheme. The confidence intervals of the Gini coefficients
and the variances were calculated using a bootstrapping routine. For a bet-
ter understanding on the impact of the outlier detection schemes on the Gini
coefficient, the estimated Gini coefficient for the original data set without
any changes is also displayed. The bottom panel of Figure 13 shows the per-
centage of detected potential outliers divided by color into upper and lower
outliers. It is easy to see that outlier detection methods which do not ac-
count for skewed data detect only upper outliers. Furthermore, the number
of flagged potential outliers by those detection schemes is rather substantial.
In combination with the top part of Figure 13 it is clear that the correspond-
ing Gini values are heavily influenced after using the adjustment of these
potential outliers. Interesting to see is that, aside from Pareto tail modeling,
methods which adjust for the skewness of the data detect quite many lower
potential outliers. The number of lower outliers in the case of the adjusted
boxplot is especially high which indicates that the adjusted boxplot might
not perform too well in this case. Reason for this is the fact that the ma-
jority of outliers in the data are expected to be upper outliers, and since the
data are skewed to the right, upper outliers have a much larger influence on
the spread of the data and therefore on the uniformity of the data values.
Because of that, detecting lower outliers might not be unreasonable but their
influence on the Gini coefficient is comparably small. This leads to the fact
that, considering the data contain true outliers and the Gini coefficient is sus-
pected to deliver biased results because of them, the bias caused by outliers
will be primarily generated through upper outliers.

Univariate outlier detection methods were also applied to the household
expenditure data from the countries India, Mexico, Malawi and Tajikistan.
The results, including estimates of Gini coefficient and variance of Gini co-
efficient as well as resulting outlier information are shown in Table 5.

6.2.1 Column-wise implementation of univariate methods

Applying univariate outlier detection methods on the data of total annual
expenditure is a straightforward and simple approach. One of the drawbacks
with this approach is that the multidimensional structure of the data set is
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not taken into account. Due to that, households which have listed erroneous
information for a specific good or service might be overlooked since their
total annual expenditure does not appear extreme enough to be marked as
potential outlier. On the other hand, wealthy households which have mod-
erately high expenditures for a lot of goods or services might have rather
extreme total annual expenditures and will be flagged as potential outliers.
To address this problem while using univariate outlier detection methods one
can apply these methods and adjust potential outliers, according to the used
methods, on every expenditure category separately. For this application, the
expenditures are divided into the ICP category code. With this approach,
zeros will be left out, meaning that if a household has zero information (or no
information) on expenditures in a category, they will be discarded for outlier
detection on this category only. In order to calculate the Gini after potential
outliers have been detected, the expenditures for the different categories will
be summed up for each household. This approach has been used for the
Albanian data set with the use of the ICP category code described in Sec-
tion 6.1. The resulting Gini coefficients and statistics for potential outliers
are displayed in Figure 14. The upper left panel shows the resulting Gini
coefficients and corresponding 95% confidence intervals, and the upper right
panel shows the variance of the Gini coefficient. The bottom panel shows the
share of observations which were flagged as potential outliers in the whole
data set. The color coding indicates for how many categories an observation
was flagged as outlier for a specific outlier detection scheme.

The results displayed in Figure 14 indicate that methods which do not
account for skewness in the data are not appropriate. The share of observa-
tions which have been flagged as potential outliers in at least one category is
beyond 50%. Therefore it is questionable if these univariate methods, applied
on each column of the data, produce reliable results at all. Also the adjusted
boxplot declare a high amount of observations as potential outliers. The
methods using the Box-Cox transformation and the Pareto Tail modeling
produce more reasonable results. For these methods, the share of detected
potential outliers is within the range of 10%, and for the Pareto modeling
even far less. The high share of flagged observations results from the fact
that by applying univariate methods in a column-wise manner, potential out-
liers in one column must not correspond to the same observation as potential
outliers of another column. In a worst case scenario, this column-wise ap-
proach could result in flagged potential outliers in at least one cell of every
observation. This indicates that a column-wise implementation of univariate
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Figure 14: Top: Estimates for Gini coefficient (left) and Variance of Gini
coefficient (right) of Albanian data set after column-wise outlier detection
and adjustment for various outlier detection schemes.
Bottom: Share of potential outliers detected by column-wise application of
different outlier detection methods onto the Albanian household data. Dif-
ferent colors indicate for how many categories an observation was declared
as potential outlier.

60



methods on a data set, as it is presented in this work, has severe drawbacks.
It is interesting to see that although the outlier detection methods using

the Box-Cox transformation detect far more potential outliers as the Pareto
modeling, the resulting Gini coefficients after imputation of the detected out-
liers do not differ so much. This can possibly be explained by the fact that
many potential outliers detected by the methods using Box-Cox transforma-
tion do not have a significant influence on the total annual expenditures of the
corresponding individual. Therefore, the calculation of the Gini coefficient
will not be heavily influenced by such potential outliers.

6.3 Multivariate Methods

The multivariate outlier detection methods, which will be applied on the
household expenditure data sets from the World Bank, include mainly meth-
ods which calculate location and covariance of a multivariate data set in a
robust way. In addition, the epidemic algorithm and the BACON-EEM al-
gorithm will be tested. A description of all these algorithms can be found
in Section 4. For the calculations of the methods which estimate location
and covariance in a robust way, the R-package rrcov was used utilized, see
Todorov and Filzmoser [2009]. As mentioned in Section 4, these methods
can be tuned to achieve a certain breakdown point, and some methods have
a tuning parameter for efficiency and small sample correction factors. For
the following calculations, the default values for breakdown point and tuning
parameters for efficiency or small sample correction which are implemented
in the Rpackage rrcov were adopted and are listed in Table 6.

In the following, the multivariate outlier detection methods will be applied
to the expenditure data of the Albanian data set.

6.3.1 Imputation to replace zeros

Before the methods can be applied, the data are transformed into matrix
format by using the ICP category code, as discussed in Section 6.1. In this
format, the data contain many zeros. Since the number of zero entries is
well over 50% for some categories, the columns containing these expenditure
categories were combined using the method mentioned in Section 6.1. This
method compares the IQR of each expenditure column and adds two or more
columns to reduce the number of zeros. This was done to ensure that the algo-
rithms for the multivariate outlier detection methods are executable without
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breakdown
point

efficiency small sample
correction

M-estimate 0.45 1 –
MM-estimate 0.5 0.95 –

S-estimate 0.5 can be quite inefficient –
MCD 0.5 considerably increased

by the use of weights
Yes

MVE 0.5 – –
Stahel-Donoho 0.5 – –
OGK-estimate 0.5 increased by reweight-

ing
–

EA
BAECON-EEM

Table 6: Specifications for breakdown point, efficiency and small sample
correction for the multivariate outlier detection methods.

error. This procedure does not necessarily reduce the number of zeros, but it
may lead to less complications for the multivariate outlier detection methods.

Among the multivariate outlier detection methods considered here, only
the epidemic algorithm and the BACON-EEM can deal with zeros (which
are internally treated as missing entries). For all remaining multivariate
outlier detection methods, too many zero values will cause an error in the
execution, and thus the zero entries will be replaced by imputed values using
the k-nearest neighbor algorithm.

K-nearest neighbor algorithm The k-nearest neighbor (kNN) algorithm
is a classification algorithm which has been proven useful for imputation
of multivariate normal data [Templ et al., 2012]. Let X ∈ Rn×p be a
given data sample with p variables. Then the k-nearest neighbors of a
new observation xn+1 ∈ Rp are those {xi1 , . . . ,xik} for which the distances
d(xn+1,xij), j = 1, . . . , k, are smallest. This approach makes it possible
to classify data points by determining their class label by the labels of its
k-nearest neighbors. The kNN method used in this work is implemented
in the R-package VIM, see Templ et al. [2012]. For defining the nearest
neighbors, the distance computation is based on an extension of the Gower
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distance [Gower, 1971]. This extension is able to handle distance variables of
the type binary, categorical, ordered, continuous and semi-continuous. The
distance between two observations xi,xj ∈ Rp is defined as

d(xj,xi) =

p∑
k=1

wkδi,j,k

p∑
k=1

wk

,

with wk as weight which represents the importance of the k-th variable,
and δi,j,k as the contribution of the k-th variable. This distance between
two observation is therefore the weighted mean of the contributions of each
variable.

Depending on the variable type, δi,j,k is defined differently. In this work
the used variables are all continuous, for which δi,j,k is defined as

δi,j,k =
|xi,k − xj,k|

rk
,

where xi,k is the value of the k-th variable of the i-th observation and rk is
the range of the k-th variable. For the definition of other types of variables,
see Templ et al. [2012].

Let an observation xl ∈ Rp have one or more zero cells. For the imputation
with the kNN algorithm, the distances are only calculated between xl and
observations without zero cells, and for the calculations only variables which
are not zero in xl are considered. Finally, a zero cell of xl is imputed by using
the k values of the nearest neighbors of the zero variable. For continuous
variables, the default option in Templ et al. [2012] is the median, although
other statistics are possible.

After replacing the zero values by sensible values, the multivariate out-
lier detection procedures can be applied. The potential multivariate outliers
are then projected onto the 95% tolerance ellipse, for which the covariance
matrix was robustly estimated for the outlier detection. In the case of the
BACON-EEM this is the final covariance estimate from the data for which
zero observations have been imputed by the EEM algorithm. The epidemic
algorithm does not compute a covariance during the task of detecting poten-
tial outliers. In order to make the epidemic algorithm comparable to other
methods, the covariance matrix which is used for the imputation, will be
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computed by applying the classical estimate for the covariance on the data
without the potential outliers detected by the epidemic algorithm.

After the multivariate outlier detection methods have been applied and
potential outliers have been adjusted, the Gini coefficient is estimated. As in
the case of univariate methods, the Gini coefficient is estimated for the total
annual expenditures per household, where the household sample weights from
the data set are included.
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Figure 15: Top: Gini coefficients and variance of the Gini coefficients of the
Albanian data set after outlier detection and adjustment.
Bottom: Fraction of identified potential outliers on all observations.

Figure 15 shows the results for the estimated Gini coefficients and share of
detected potential outliers for each multivariate outlier detection method ap-
plied to the Albanian household expenditure data. In contrast to univariate
outlier detection (Figure 13 and Figure 14) the results for the Gini coefficients
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do not differ so much between the methods. Only the results for the OGK es-
timate and the epidemic algorithm differ slightly. Also the share of detected
potential outliers does not differ a lot between the methods, except for the
OGK estimate and the epidemic algorithm. Compared with the column-wise
application of univariate outlier detection methods, the number of detected
potential outliers is far lower for the multivariate outlier detection methods.

The results of the multivariate outlier detection methods for Albania and
other countries are presented in Table 7, and they are quite similar for all
used methods. Therefore it is not clear in general, which of the methods
performs best. Even in comparison with the use of univariate methods it is
not clear if univariate or multivariate outlier detection methods should be
preferred.

To address this problem, a simulation study is conducted to see how the
different methods perform on data which are generated based on the Albanian
household expenditure data.

6.4 Simulation Study

The number and positions of the ”real” outliers in the data sets are unknown.
Moreover, there is no knowledge about a ”true” Gini value. It is thus difficult
to decide which of the estimators is ”better” in the sense of ”more reliable”,
and which has poorer behavior. It is clear from theoretical properties of the
estimators that differences in performance are to be expected. Moreover, it
is somehow clear that a multivariate consideration should be in general more
suitable than a univariate approach. However, all this might be different
when we are interested for example in a reliable value for the Gini coefficient.

In order to get deeper insight, a simulation study is conducted using the
Albanian data set. The results of the study can be generalized also to other
data sets.

6.4.1 Simulation setup

The basic ideas for a simulation are as follows.

1. Simulate such kind of data sets which are comparable, regarding the
data on household expenditure, with the ones provided by the World
Bank.

2. To know the number and position of ”true” outliers beforehand.
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This will allow for a concise performance evaluation of the different estima-
tors.

Simulated data
We will generate data for which the distribution is based on the distribution
of the expenditure data from the Albanian data set. First of all, the ex-
penditure data from the Albanian data set, aggregated by category of prod-
ucts/services, are transformed using the logarithm since the data in each
expenditure category are skewed to the right and many of the outlier detec-
tion schemes depend on underlying normal distribution or even multivariate
normal distribution.

Simulation of ”clean” data and outliers
After transformation, the data set is split into a ”clean” data set which con-
tains most likely no outliers and a ”contaminated” data set which contains
mostly outliers. This is based on the results of the univariate and multivariate
outlier detection schemes applied on the household expenditure data of the
Albanian data set, meaning that the clean data set contains only observations
that have not been flagged by any of the outlier detection schemes as poten-
tial outliers. This resulting data set consists of 2752, out of 3600, most likely
uncontaminated observations. The contaminated data set contains observa-
tions that were flagged as potential outliers by at least 5 univariate outlier
detection methods or at least 6 multivariate outlier detection methods. The
contaminated data set consists of 390 observations. From the contaminated
and clean data sets, location and covariance are estimated in a classical way.
Denote the corresponding estimates by (x̄cl,Scl) for the clean data, and by
(x̄co,Sco) for the contaminated data. These estimates are then used as a basis
for the distribution of the simulated data sets. If the clean or contaminated
data sets contain any zero values, they will be replaced by imputation with
the k-nearest neighbors algorithm, so that the multivariate outlier detection
algorithms can be applied.

The simulated data are then generated from a mixture distribution ac-
cording to

X ∼ (1− ε)MVN(x̄cl,Scl) + εMV N(x̄co,Sco), (30)

with ε ∈ (0, 1) determining the proportion of contaminated data points.
Here, “MVN” denotes multivariate normal distribution. The number of ob-
servations of X is 3600, the same as in the original Albanian data set.
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Practically, the number of contaminated observations corresponds to a
chosen proportion ε, and the corresponding rows of X were picked randomly.
It was also of interest to investigate the behavior if not the complete obser-
vation but only some cells of the observation were contaminated. Given the
ith observation for which only the jth cell will be contaminated, the cell is
replaced by yij, with

Y ∼MVN(x̄co,Sco). (31)

Inclusion of zero values
Another aspect for the data simulation is the inclusion of zero values, since
the number of zero observations can be quite high and play quite a big role
for the analysis on such data sets. The placement of these zero values is the
same as observed in the original Albanian data set and they will be included
after the data have been generated. By replacing values in the simulated data
set with zeros it can occur that previously generated artificial outliers will be
replaced by those values. Since the data are simulated many times and since
the placement of zeros overlapping with the randomly chosen contamination
is not very likely, it is expected to have not a large impact on the simulation
study. Since sample weights also play quite a role for the presented outlier
detection methods as well as for the Gini calculation, the simulated data sets
receive the same sample weights as the household weights in the Albanian
data set.

Application of univariate methods
Since the simulated data were generated by multivariate normal distribution
based on log-transformation of the original Albanian data set, the simulated
data will be transformed back with the exponential function to generate
skewed data that have nearly the same distribution as the original data sets.
Afterwards, the univariate outlier detection methods are applied on each col-
umn of the data set. In addition, univariate outlier detection methods will
make use of the household sample weights provided by the Albanian data
set. After the univariate outlier detection methods have been applied and
potential outliers are flagged by each method, the potential outliers are ad-
justed. Note that for the univariate outlier detection methods the zero values
are discarded for calculating and adjusting potential outliers. Note that the
positions of the artificial outliers is known beforehand, since in one scenario
the whole observation is contaminated, in another one only specific cells are
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contaminated. For each outlier detection method, the number of successfully
identified outliers is counted afterwards. Moreover, the number of falsely de-
clared potential outliers is also counted. Adjusting the potential outliers for
every outlier detection scheme creates new data sets corresponding to each of
the univariate outlier detection schemes. For each of these data sets, the esti-
mate for the weighted Gini coefficient of the total sum of each observation is
calculated. In addition, the sample weights are used to calculate the weighted
Gini coefficient. For comparison, the weighted Gini coefficient will also be
calculated on the data without prior application of outlier detection methods.
This is done to see the impact of the contamination mechanism as well as
the outlier detection methods on the estimated values of the Gini coefficient.
Furthermore, the estimated Gini coefficient for a generated data set without
contamination and without applying any outlier detection methods presents
a useful baseline estimate which is going to be used as reference value for the
estimated Gini coefficients after outlier detection and adjustment have been
applied on a contaminated data set.

Application of multivariate Methods
In the case of multivariate outlier detection, the simulated data are not trans-
formed by the exponential function prior to outlier detection, simply because
the presented multivariate outlier detection methods require data which are
essentially multivariate normally distributed. In contrast to the univariate
outlier detection methods, not all multivariate outlier detection methods can
deal with a higher proportion of zero values in the data set. Only the epi-
demic algorithm and the BEM are able to handle zeros, by treating them
internally as missing values. For the other multivariate outlier detection
methods the zeros will be imputed prior to outlier detection by using the
k-nearest-neighbor algorithm. The imputed zero values are only used for the
outlier detection methods, and after outlier detection the imputed values are
replaced again with the zeros. As for univariate outlier detection, the number
of correctly identified artificial outliers are counted, and also the number of
falsely declared potential outliers is counted.

As mentioned previously, applying the outlier detection methods and ad-
justing potential outliers generates new data sets for each of the used outlier
detection algorithms. These data sets are transformed with the natural log-
arithm and the columns of the data sets are summed up to calculate the
weighted Gini coefficient of the total accumulated observations. The data
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are transformed prior to the Gini calculations since the resulting Gini is then
more comparable to the case of univariate outlier detection methods as well
as to the original data set of household expenditures. As in the univariate
case, the Gini coefficient will also be calculated for generated data with-
out applying any outlier of the multivariate outlier detection methods. This
estimate shows the impact of the outlier on the estimated Gini coefficient.
Furthermore, estimating the Gini coefficient without applying any outlier
detection methods on a data set without contamination provides a reference
value to better compare the estimated Gini coefficients after applying out-
lier detection methods and adjusting potential outliers on contaminated data
sets.

6.4.2 Simulations results

For the following results, the procedures outlined above were repeated 50
times with different levels of ε, i.e. ε ∈ {0, 0.01, 0.025, 0.05}. As discussed
above, for a part of the contaminated data only one cell of each observa-
tion, and for the rest of the contaminated data, the whole observation is
contaminated. Concretely, 1/3 of the contamination will be cell wise, and
for 2/3 of the contaminated data the whole observation is contaminated, see
contamination schemes in Equation (30) and (31).

Results from univariate methods
Figure 16 shows boxplots of the resulting Gini coefficients for each method
and each level ε of contamination. The outlier detection methods are Pareto
modeling (pareto.rn), adjusted boxplot (adjbox), boxplot (boxplot), robust
Box-Cox with MAD (bcrob.MAD), Box-Cox with MAD (bc.MAD), median
±3 MAD (MAD), robust Box-Cox with IQR (bcrob.IQR), Box-Cox with IQR
(bc.IQR), median ±3 IQR (IQR). In the case where no outlier detection
method was applied (Original) the boxplot was only plotted for ε = 0, since
for other levels of ε the boxplots would cover a far greater range which makes
the results for the applied outlier detection methods harder to read. From
Figure 16 it is interesting to see that for higher values of ε the values for the
Gini coefficient increase. This would seem strange since the outlier detection
schemes are supposed to identify the potential outliers and in connection
with outlier adjustment, the effect of the potential outlier should be negated.
However, for the outlier imputation, except in the case of the Pareto mod-
eling, the potential outliers are adjusted to the interval boundaries, whereas
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these boundaries are calculated during the detection methods, adjusted out-
liers still have an influence on the Gini. Nevertheless, this trend is rather
small and for outlier detection schemes which take into account skewness of
the data, the resulting Gini is still quite close to the one with no contamina-
tion and no outlier detection scheme applied. There is a qualitative difference
of the rules box, MAD, and IQR, which clearly underestimate the Gini.

Original

IQR

bc.IQR

bcrob.IQR

MAD

bc.MAD

bcrob.MAD

box

adjbox

Pareto.rn

20 40 60 80
estimated Gini coefficient

Level of
contamination

e=0

e=0.01

e=0.025

e=0.05

Figure 16: Boxplots of calculated Gini coefficients for different outlier detec-
tion methods and different levels of ε.

Apart from the resulting Gini coefficient it is of great interest to see how
many artificial outliers have been successfully detected. Figure 17 shows the
boxplots of the number of successfully detected artificial outliers, for which
the whole observation was contaminated, for each outlier detection method
and different levels of ε. The legend on the right side of the plot indicates
how many artificial outliers were generated in total. The plot shows that
the methods were not at all successful in detecting outliers and that the re-
sults got worse for higher values of ε. Furthermore, outlier detection schemes
which used the Box-Cox transformation were not as successful at identifying
outliers, for the scenario where the whole observation was contaminated, as
their counterparts which do not use this transformation. In the case of con-
tamination, where only a single cell was contaminated, the outlier detection
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Figure 17: Boxplots for successfully detected artificial outliers, where the
whole observation was contaminated, for different outlier detection methods
and different levels of ε.

methods where not very successful as well. The results are plotted in Figure
18. In contrast to the row-wise contaminations the results for the cell-wise
show not so drastic differences between the univariate measures. In the case
of Pareto modeling, the algorithm seems to have not performed well. The
reason for this could be the use of the Van Kerm’s rule of thumb which deter-
mines after which point the Pareto distribution is fitted. This rule of thumb
was a suggestion based on the EU-SILC data. It is reasonable to argue that
this suggestion might not be suitable for this simulation and the results for
the Pareto modeling are therefore not satisfactory. Regarding the successful
detection of outliers it can be said that the boxplot, adjusted boxplot and
the methods using IQR or MAD without Box-Cox transformation were able
to identify comparatively more artificial outliers than the other detection
methods.

Another interesting statistic is the number of flagged potential outliers
which are not artificially contaminated observations. Figure 19 shows the
corresponding boxplots for the different outlier detection methods and dif-
ferent levels of ε. The x-axis corresponds to the share of flagged outliers to
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Figure 18: Boxplots for successfully detected artificial outliers, where only
single cells were contaminated, for different outlier detection methods and
different levels of ε.

the total amount of clean data in the simulated data set. Except for Pareto
modeling or methods which incorporate the use of the Box-Cox transforma-
tion, the number of falsely flagged outliers is high. One could even argue
that the numbers for methods which use the Box-Cox transformation are
too high. The high amount of falsely flagged outliers in the case of the box-
plot, adjusted boxplot and the methods using IQR or MAD without Box-Cox
transformation put in perspective their relatively better performance regard-
ing the ability to correctly identify artificial outliers. Although these methods
were able to detect comparatively more outliers, the high number of falsely
flagged potential outliers suggests that these methods are not precise for out-
lier detection. From the results shown above, the use of univariate outlier
detection schemes, or at least the column-wise use of those methods does not
seem appropriate for this kind of data. The ability to detect artificial out-
liers was not convincing and the number of falsely flagged potential outliers
was far too high in almost all cases. Note that by adjusting the parameters
for univariate outlier detection methods (like the constant for mean/spread
rules), one could reduce the number of false outliers, but this goes hand in

73



IQR

bc.IQR

bcrob.IQR

MAD

bc.MAD

bcrob.MAD

box

adjbox

Pareto.rn

0 20 40 60
Percentage of false/positive outliers

Level of
contamination

e=0.01

e=0.025

e=0.05

Figure 19: Boxplots for share of false/positive outliers to number of clean
data points for different outlier detection methods and different levels of ε.

hand with a poorer performance of correctly identifying outliers.

Results from multivariate methods
Similar to the univariate outlier detection methods, Figure 20 shows the
boxplots of the Gini values for the different outlier detection methods and
different levels of ε. The methods shown are epidemic algorithm (EA), Bacon
EEM algorithm (BEM), S-estimators (Sest), Stahel-Donoho estimator (Sde),
OGK estimator (OGK), MVE estimator (Mve), MM-estimator (MMest), M-
estimator (Mest), MCD estimator (Mcd), and the Gini for the uncontami-
nated data (Original). It is immediate that the epidemic algorithm performs
rather poor. This can be explained by the fact that this algorithm needs
quite a lot of tuning for parameter calibration until it is really applicable to
a problem. We used the default parameter setting in our simulation study.
Under those circumstances the algorithm is not bad per se but it is not very
versatile without meaningful calibration which differs depending on the un-
derlying data. For the other outlier detection schemes one can see, as in the
case of univariate outliers, an increase in the Gini for rising levels of con-
tamination. As it was argued for the univariate case, this is caused by the
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imputation, which does not perfectly replace an outlier by projecting it to
the 95% tolerance ellipse. Thus a rising number of outliers leads to a rising
number of observations lying on the boundary of the 95% tolerance ellipse.
The data points of the resulting data set are therefore wider spread from
the center of the data than the data points in the uncontaminated data set.
This difference in the distribution of the data can finally be seen in values of
the Gini coefficients for different levels of ε. Apart from that, the results for
the multivariate outlier detection methods do, even for higher levels of ε, not
differ too much from the case where the data were not contaminated and no
outlier method was applied.

Original

Mcd
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Mve

Ogk
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BEM
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20 40 60 80 100
estimated Gini coefficient

Level of
contamination

e=0
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e=0.05

Figure 20: Boxplots of calculated Gini coefficients for different outlier detec-
tion methods and different levels of ε.

Figures 21 and 22 show the numbers of correctly identified artificial out-
liers by the multivariate outlier detection methods. Figure 21 corresponds
to artificial outliers for which the whole observation was contaminated and
Figure 22 corresponds to those where only one cell was contaminated. Both
plots show, apart from the epidemic algorithm, that the multivariate outlier
detection methods where much more successful than the univariate methods.
In many cases the algorithms were able to detect every artificial outlier and
even for rising values of ε the numbers are still high. The epidemic algorithm
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did not perform too well, but as stated earlier this is due to poor calibration
of the parameters, which is in practice a cumbersome task.
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Figure 21: Boxplots for successfully detected artificial outliers, where whole
observation was contaminated, for different outlier detection methods and
different levels of ε.

For the case of falsely flagged potential outliers, Figure 23 shows the
resulting boxplots for different outlier detection methods and different levels
of contamination. Compared with the univariate case, the numbers of falsely
flagged potential outliers are generally lower. The OGK estimate seems to
perform not so well and has a far higher number of falsely flagged potential
outliers than the other methods. The majority of the multivariate outlier
detection schemes have for ε = 0.01 roughly the same amount of falsely
flagged potential outliers. Increasing levels of ε generally lead to the smaller
amounts of falsely flagged potential outliers. Overall, except for the epidemic
algorithm that was ruled out as valid method beforehand, the BEM delivers
the smallest amount of falsely flagged potential outliers. This and the fact
that the BEM was also successful in identifying artificial outliers, leads to
the conclusion that the BEM performed best in this simulation study.
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Figure 22: Boxplots of successfully detected artificial outliers, where only
single cells were contaminated, for different outlier detection methods and
different levels of ε.

7 Suggestions and recommendations

This report focuses on outlier detection in household expenditures, and on
the effect on the Gini index after adjusting the outliers. For both univariate
and multivariate outlier detection it is essential how the categories of the
household expenditures are grouped. Sections 6.1.2 and 6.1.4 provide details
about these issues.

Note that outlier detection for per capita expenditures was not considered
here. Although technically the procedures could be used in the same manner,
it is not so clear content-wise how to proceed. The simplest possibility,
dividing the household expenditures by the household size, would lead to a
bias since the age structure might be an important factor that needs to be
taken into account. For example, expenditures for education or health care
will strongly depend on age.

The outlined methods for univariate and multivariate outlier detection
can be considered as the set of possible methods available in the statistics
literature. The methods differ in their need for preprocessing (e.g. imputa-

77



Mcd

Mest

MMest

Mve

Ogk

Sde

Sest

BEM

EA

0.000 0.025 0.050 0.075
Share of false/positive outliers

Level of
contamination

e=0.01

e=0.025

e=0.05

Figure 23: Boxplots for share of false/positive outliers to number of clean
data points for different outlier detection methods and different levels of ε.

tion of missing values), distributional assumptions, but also the sensitivity
and specificity to identify outliers. The conclusions made in this section are
mainly based on the simulation study conducted in Section 6.4, where a set-
ting was used to include realistic outliers following the patterns of the data
structure.

Univariate outlier detection: There are several issues, like data transfor-
mation, different estimators being available to define the outlier identification
rules, etc. Independent from the rule used, the univariate methods in gen-
eral are unable to identify all the simulated outliers, and, depending on the
method used, they flag many regular observations as outliers. For the latter
case, the (robust) Box-Cox transformed values, together with a rule median
plus/minus 3 times MAD or IQR perform best. This can also be seen in the
resulting estimated Gini, where these methods are close to the Gini values
for the “uncontaminated” original data.

So, the recommendation for univariate outlier detection is:

• Transform the data to approach normality, using the Box-Cox or a
robust Box-Cox transformation;
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• Use the median as a robust location estimator, and the IQR or the
MAD (consistency corrected) as robust scale estimator;

• Use the rule: robust location ±3× robust scale.

Note that one could try to optimize the value “3” in the above rule. Although
this choice is somehow a standard choice in statistical practice, a different
choice it might lead to an improvement for outlier detection in this context.
An evaluation could be done in a similar way as it has been done in the above
simulation study.
Multivariate outlier detection: Rules based on multivariate outlier de-
tection have the advantage over univariate rules that the correlation struc-
ture among the variables is considered. On the other hand, a multivariate
outlier rule flags the whole observation as an outlier, even if some cells are
non-outlying. Therefore, in the simulations also cell-wise contamination was
considered in order to get an idea about this effect.

Overall, the methods were more precise than univariate rules, in terms of
correctly identifying outliers, and in terms of smaller amounts of incorrectly
flagged outliers. Out of the tested methods, only the Epidemic Algorithm
(EA) delivered poor results, which was mainly based on suboptimal tuning
parameters. One could play with these parameters, but the danger is that
they need to be adjusted for every new data set. The OGK estimator gave
slightly worse results, but all other methods are very much comparable.

Note that for all multivariate methods, the replacement of the outliers as
suggested is important. For the multivariate methods also the choice of the
granularity for the categories is important. The more categories are used, the
more samples are required for gaining stability of the multivariate estimates.
On top of that, more granularity for the categories usually leads to more zero
values, which is another problem for most of the methods considered here.
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